( ) FAS87 FAS FAS87 v = 1 i 1 + i

Size: px
Start display at page:

Download "( ) FAS87 FAS FAS87 v = 1 i 1 + i"

Transcription

1 ( ) ( 7 6 )

2 ( ) FAS87 FAS FAS87 v = 1 i 1 + i

3 N (m) N L m a N (m) L m a N m a (m) N

4

5

6

7

8 1,000 1, , , , A 1,000 A a ,000 A a - 7 -

9 a , ,000, ,

10 2,000,000 a , ,000 a a

11 2.0 1, a

12 r 1 r Dy y= e 1 / P e 1 1 Dy r 1 l r y y y= e v 1 / P e 1 1 l y y v r y= D a l e r a v = r D a l e a v r r r r S 1 S G G / N / N r r r

13 167 3 r 1 r 1 l l B = B B N = B N = = = = r 1 r 1 r r L L α ( b l ) b l α ( b l ) b l = N ( ) = N = N ( ) B n ( P ) B n ( P ) P = P = B an B an r P = n < n < P L = + PS ( ) ( + ) = P = ( ) = N

14 = ( ) 3 B n P = B a n = P B a n P B = P B an 1 +1 ( 1+ i) + 1 ( 1 + i) + 1 = P n a n ( 1+ i) P a 1 ( ) = P 1+ i

15 + 1 = ( 1+ i) P ( 1+ i) B r P = r 1 +1 ( 1+ i) P ( i) + 1 =

16 P = B a n n m n > m m P = B am P P P 1 +1 ( ) ( 1 + i) P ( i) 1 = P P B 1 ( + i) n

17 ( ) + w ( w) 2 d v b a d v b a 2 0 = ( + ) 0 L 1 0 = B j ( + ) 0 L 1 B j 0 lb 0 l b

Microsoft Word - ランチョンプレゼンテーション詳細.doc

Microsoft Word - ランチョンプレゼンテーション詳細.doc PS1-1-1 PS1-1-2 PS1-1-3 PS1-1-4 PS1-1-5 PS1-1-6 PS1-1-7 PS1-1-8 PS1-1-9 1 25 12:4514:18 25 12:4513:15 B PS1-1-10 PS1-2-1 PS1-2-2 PS1-2-3 PS1-2-4 PS1-2-5 PS1-2-6 25 13:1513:36 B PS1-2-7 PS1-3-1 PS1-3-2

More information

DVR-DS8000 1 2 3 4 5 6 7 1 2 3 4 4 4 4 5 6 7 7 8 9 9 10 11 1 2 3 4 5 6 7 1 1 1 1 2 2 3 4 5 5 6 7 1 2 3 4 5 6 7 8 9 10 11 1 2 2 2 2 2 3 3 4 4 4 4 4 5 5 6 7 7 7 7 7 8 8 8 8 8 9 9 10 11 11 TEL

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+ 5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.

More information

E4230JD_ qx4j

E4230JD_ qx4j 1 2 3 4 5 6 7 8 9 10/0 11 12 NB304 DVR-16HD DVR-16HD DVR-16HD 2 ALL Point Point VR Video Point DVR-16HD CD CD DVD-V DVD-V VR Video Point DVR-16HD 1 2 3 4 5 6 7 8 9 10/0 11 12 16HD NB304 Point

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

untitled

untitled -1- -2- -3- AED -4- 2-5- -6- -7- -8-6-1-28 048-833-1231 2-1-1 048-261-3119 4389-1 048-556-3005 1-13-11 04-2924-1311 2097-1 048-738-3111 1172 04-2953-7111 990-1 048-565-1919 537 048-775-1311 2-2-2 048-924-2111

More information

clover-375.pdf

clover-375.pdf 8:4511:00 9:0012:30 9:0016:3003-5986-3188 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - 1 2 3 5 6 7 8:4515:00 9:0016:30 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - - - - () - - - - - - - 8 10 12

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

DV-DT1 取扱説明書

DV-DT1 取扱説明書 2 ALL Point Point VR Video DVD-R Point VCR VCR VCR CD CD CD DVD-V DVD-V DVD-R DVD-R VR Video Point Point [ 7 6 5 4 3 2 1 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 98 6 5 4 3 2 1 12 1110

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

住まい・まちづくり活動事例集

住まい・まちづくり活動事例集 3 H15 1982 1988 5 H16.31 1 1 1 246 26 3 2003 11 21,417/ 65 17.91% 16.62%1.29 246 2 1 12 1246 5008026 30080 3 200803 120060 2 20013 1 1 21 11 19821988 199112003 13 1988 1 1991 28 3 1991 1993 1992 1 1995

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

PageScope Box Operator Ver. 3.2 Box Operator !. - - 2! - - 2 - 2 - - - - - - - - - - - - - 2 2-2 2-2 - - - 1 2 3 4 2 - 2 - - - - - - - - - - 2 - - - - - - - - - 2 0 - - 2 0 - - 2 0 - -

More information

Ⅱ 防災計画の概要

Ⅱ 防災計画の概要 12 ( 10 304 3 16 14 25 3 ) ( ) 1 3 1 18 12 2 ( ) ( ) 18 12 ( ) ( ( ) ( ) ( ) ( ) 1 ( ) 3 ( ) ( ) ( ) 4 5 1 2 3 ( ) 4 1 1 6 7 3 3 2 3 3 ( ) 1 AM PM 8 9 8 30 8 50 8 50 9 00 9 00 9 50 10 00 11 00 11 00 12

More information

CISPR11 AM J55001(H22)

CISPR11 AM J55001(H22) J55011H27 CISPR 11 5 (2009), Amd.1(2010) J55001(H22) 3 a) CISPR11 26 3 CISPR11 J55011 b) CISPR11 CISPR11 2 CISPR11 CISPR11 CISPR11 CISPR11 CISPR11 c) CISPR11 CISPR11 CISPR11 CISPR11 AM J55001(H22) 1 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

東大阪地域活性化支援機構活動レポート2015 _061620

東大阪地域活性化支援機構活動レポート2015 _061620 !1 NPO 2015 2016 5 16 NPO !2 DIGEST NEWS 2015 2015.04.05 3 10 1 6 2015.08.29 AM 1 1 AM 4 6 IC !3 2015.09.02 AM AM 1 8 29 4 6 AM NPO 1 2003 53 2 65000 13 2015.09.07 AM AM 9/7 12 15 18 22 9/12 9/13 !4 2015.11.24

More information

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h 6 6.1 6.1.1 O y A y y = f() y = f() b f(b) B y f(b) f() = b f(b) f() f() = = b A f() b AB O b 6.1 2 y = 2 = 1 = 1 + h (1 + h) 2 1 2 (1 + h) 1 2h + h2 = h h(2 + h) = h = 2 + h y (1 + h) 2 1 2 O y = 2 1

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p

More information

HDV-909DT.indb

HDV-909DT.indb B6-9-/ (J) --6 6 6 8 9 6 8 9 6 6 6 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 6 6 6 6 6 6 6 66 6 68 69 6 8 9 8 8 8 6 8 9 6 6 6 6 6 66 6 68 69 6 6 6 6 6 6 66 6 68 69 6 6 6 6 6 6

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

200 2 6 2............................... 2.2.............................. 2.3.............................. 3 2 3 2...................................... 3 2.2.................................. 4 2.3

More information

平成13年度日本分析センター年報

平成13年度日本分析センター年報 200 150 70 234 Bq m 3 1 148 Bq m -3 100 0 550 0 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 25 20 15 10 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 39.2 Bq m -3 11/4 0:00 am 30 990 19.3 Bq m -3 60 15.8 Bq m -3 14.1

More information

16

16 15 16 3-1 3-2 3-3 3-3-1 2 2-1 2 3-3-2 3 3-1 17 ) 3-3-3 115 115 8 10 3-2 3-2 1 1573 24 617 47 322 70 193 93 107 2 1441 25 600 48 313 71 192 94 106 3 884 26 592 49 262 72 189 95 98 4 883 27 571 50 304 73

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information