3
|
|
|
- あつみね ののした
- 9 years ago
- Views:
Transcription
1
2 2020 1
3 2
4 H11 H11 GRP H
5 4
6 5
7 6
8 H2 BPR BPR Ajtij Kij XijGi Aktik Kik k 7
9 Xijk GiAjdij Xijij Gi Aj dijij t tgitaj txijtk tdij txij ij tgi i taj j tdij ij k,, t tn t 2 tnt 8
10 txij tgi taj - tdij t-(t-n) C t-nxij t-ngi t-naj t-ndij S60H2H6H
11 () 10
12 t Ya0aiXi ai Ya0a1X1a2X2 akxkaii012 kh0ai0h1ai0 ai SEai t0 ai SEai t0nk1 t tnk1 t t0t ai 0 t0t ai 0 t0t YiYiYi 11
13 Yiui uiyiy Yii1 uiui1 d utytytt T T dutut 1 2 ut 2 t=2 t=1 Tut TddUdL ddl dud4du d4dl dlddu 4dUd4dL Y aixi a2x2 a3x3 C a2 12
14 t AiAPiP n n 1 P Ai n i1 AbsRMS P Ai i n %RMSlAbsRMSl/ Al WGTRMS%RMSlTl l l Tll AbsRMS %RMS WGTRMS %RMS P Ai 1 MAPE 100 n i Ai 13
15 AiAPiP i AiA 2 PiP 2 i 11 i 14
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
02
Q A Ax Pb Ni Cd Hg Al Q A Q A Q A 1 2 3 2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 0 1 2 3 4 1 0 1 2 Q A ng/ml 4500 D H E A 4000 3500 3000 2500 2000 DHEA-S - S 1500 1000 500 0 10 15 20 25 30 35 40 45
Q E Q T a k Q Q Q T Q =
i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62
東京大学学内広報No.1409
for communication across the UT 2011.2.22 No.1409 2 No.1409 2011. 2. 22 No.1409 2011. 2. 22 3 4 No.1409 2011. 2. 22 No.1409 2011. 2. 22 5 6 No.1409 2011. 2. 22 No.1409 2011. 2. 22 7 8 No.1409 2011. 2.
東京大学学内広報No.1401
for communication across the UT 2010.7.26 No.1401 2 No.1401 2010. 7. 26 No.1401 2010. 7. 26 3 4 No.1401 2010. 7. 26 No.1401 2010. 7. 26 5 6 No.1401 2010. 7. 26 No.1401 2010. 7. 26 7 8 No.1401 2010. 7.
-2-
-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25- -26- -27- -28- -29- -30- -31- -32- -33- -34- -35- -36- -37- -38- -39- -40- -41- -42-
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....
+ http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46
*2015カタログ_ブック.indb
-319 -320 -321 -322-40 1600-20 0 20 40 60 80 100 1600 1000 600 400 200 100 60 40 20 VG 22 VG 32 VG 46 VG 68 VG 100 36 16 ν opt. 10 5 5-40 -25-10 0 10 30 50 70 90 115 t min = -40 C t max = +115 C 0.5 0.4
ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n
1 1.1 ( ) ö t 1 (1 +ö) Ä1 2 (1 +ö=2) Ä2 ö=2 n (1 +ö=n) Än n t (1 +ö=n) Änt t nt n t lim (1 n!1 +ö=n)änt = n!1 lim 2 4 1 + 1 n=ö! n=ö 3 5 Äöt = î lim s!1 í 1 + 1 ì s ï Äöt =e Äöt s e eëlim s!1 (1 + 1=s)
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
中学校学習指導要領解説数学編
20 1 1 3 7 16 16 16 22 31 31 40 67 67 67 77 87 93 98 104 104 109 117 121 124 129 129 140 149 152 155 161 161 163 168 170 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -16- -17- -18- -19- -20- -21-
テクノ東京21 2003年6月号(Vol.123)
2 3 5 7 9 10 11 12 13 - 21 2003 6123 21 2003 6123 - 21 2003 6123 21 2003 6123 3 u x y x Ax Bu y Cx Du uy x A,B,C,D - 21 2003 6123 21 2003 6123 - 21 2003 6123 - 21 2003 6123 -- -- - 21 2003 6123 03 3832-3655
取扱説明書[N-02B]
187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t
7) と[~:. 自 主 In にし 大 人 が okita
7) と[~:. 自 主 In にし 大 人 が okita consonantaト[ 二 出 払 ~ant ~ ~~,., LL~1~..J., T~~~~~~ L_11 VV~しç ~~;id~~~ :~~マ I ~ト I~. -~VULuLuaUL ~ 叫 -~~~~t..n.,+ /き/がとにならず あるいは t と 自 由 変 異 が 起 こらずらと 発 音 されるのは 語.âj~
ŠéŒØ‘÷†u…x…C…W…A…fi…l…b…g…‘†[…NfiüŒå†v(fl|ŁŠ−Ù) 4. −mЦfiI’—Ÿ_ 4.1 −mŠ¦ŁªŁz‡Ì„v”Z
( ) 4. 4.1 2009 1 14 ( ) ( ) 4. 2009 14.1 14 ( ) 1 / 41 1 2 3 4 5 4.1 ( ) 4. 2009 14.1 14 ( ) 2 / 41 X i (Ω)
For Employee 5,000 20, UT Communication Vol.6
Communication Vol.6 Contents 01 03 07 09 11 13 For Employee 5,000 20,000 2 1 1 UT Communication Vol.6 For Client 100 50 300 70 UT Communication Vol.6 2 3 UT Communication Vol.6 1 750 90 21,000 2016/3 340
23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................
53~3. 55~3. ~ 00 0l~ 20~30 2~0. ~O. (50~80) (50~80) (50~80) (50~80) 290~489 196~441 290~489 196~441 0~5. 0~4. 0~5. 0~4. (50~80) (80~ (50~80) (80~ 13~19 13~19 13~19 13~19 (50~80) (50~80) DAJ~ (50~80) (50~80)
¥¢¥ë¥´¥ê¥º¥à¥¤¥ó¥È¥í¥À¥¯¥·¥ç¥ó ÎØ¹Ö #1
#1 id:motemen August 27, 2008 id:motemen 1-3 1-5 6-9 10-14 1 2 : n < a 1, a 2,..., a n > a 1 a 2 a n < a 1, a 2,..., a n > : Google: insertion sort site:youtube.com 1 : procedure Insertion-Sort(A) for
RS-AP1[操作説明書]
RS-AP1 Icom Inc. 1 5 2 6 2 7 2 8 2 9 2 q w e r q w 10 2 q w e r e r 11 2 12 2 q w e r 13 2 14 3 15 3 q w e r t y q w e r t y 16 3 17 3 q w q w 18 3 19 3 q w e r t y u o i q w e 20 r 3 q w e r t y u o
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
AS1161 : K21
2012 AUTUMN & WINTER CATALOG AS1161 : K21 AS3432 : A28 AS1157 : S83 AS1842 : K23 AS3433 : K25 AS1953 : A28 AS1730 : K25 AS3435 : K27 AS3434 : S83 AS3431 : N27 AS1159 : L04 AX1029 : C02 RX0044 : W06 AX1031
sim0004.dvi
4 : 1 f(x) Z b a dxf(x) (1) ( Double Exponential method=de ) 1 DE N = n T n h h =(b a)=n T n = b a f(a) +f(b) n f + f(a + j b a n )g n j=1 = b a f(a) +f(b) n f + f(a +j b a )g; n n+1 j=1 T n+1 = b a f(a)
S kgikko kg T kgkg kg kg K kgkg M kgkg T kgkg F kgkg T kgkg H kgkg M kgkg 1295.893.6 kg kgkg
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
主成分分析の落とし穴.PDF
JMPer s Meeting 2003.9.9( ) 2/30 3/30 4/30 1 2 3 4 5 5/30 6/30 JMP 7/30 8/30 2 3 GM 2 GM 3 9/30 10/30 1 PCA 2 PCA PCA 11/30 12/30 PCA 13/30 1 PCA 1 14/30 2.15 3.80 4.60 3.00 3.05 4.10 2.55 0.933 0.951
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
小川/小川
p TRE p Mp p p M p S p p Tp M p p p p p p p p M T T T p p MT MR MR M M p p M M p p M T T T T T T T T S T M p M p T p M E M M p p p p TT T T p p p T T p T T T T T T T p p pt T T T p S T S S T p T T T T
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
