;;;;;;; ;;;;;;; ;;;;;;; yyyyyyy yyyyyyy yyyyyyy

Size: px
Start display at page:

Download ";;;;;;; ;;;;;;; ;;;;;;; yyyyyyy yyyyyyy yyyyyyy"

Transcription

1 ;;

2 ;;;;;;; ;;;;;;; ;;;;;;; yyyyyyy yyyyyyy yyyyyyy

3 ;; yy ;; yy ;; ;; ;; ;;

4

5

6

7

8

9

10 ;;;;;; ;;;;;;

11

12

13

14

15

16

yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;

More information

untitled

untitled 2420356585600 YY 3470336523101425240338047071 1481103367002314 8 40336700237 Y 1340091311 03587831510358783152 103001322513 0356435751 0356435759 1320022212103655644836560959 1320033 3 1 1 0336566111

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

y y y y yy y yy yy y yy yy y y y y y y yy y y y yy yyy yy y y yyyyyy yyy yy yyyy yyyy yyyy yyyy yyyy yyyy yy Q Q Q yy QQ QQ QQ QQ QQQ QQ QQQ QQQ Q QQ QQQQ QQQ QQQ QQ Q QQ

More information

untitled

untitled 23 59 13 23 24 0101 0001 0101 0002 0101 0001 0101 0002 0101 0007 0101 0009 0101 0012 0101 0026 0101 0031 0101 0033 0101 0056 0101 0059 0101 0075 0101 0076 0101 5001 0101 0002 0101 0003 0101 0008 0101 0010

More information

untitled

untitled Ÿ Ÿ ( œ ) 120,000 60,000 120,000 120,000 80,000 72,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 240,000 1,150,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000

More information

New Energy and Industrial Technology Development Organization 2 4 5 6 7 15 17 27 35 41 49 53 55 56 57 57 57 59 63 63 68 68 76 77 78 79 81 81 81 82 82 88 90 91 94 97 98 98 100 103 105 114 114 118

More information

untitled

untitled š ( ) 300,000 180,000 100,000 120,000 60,000 120,000 240,000 120,000 170,000 240,000 100,000 99,000 120,000 72,000 100,000 450,000 72,000 60,000 100,000 100,000 60,000 60,000 100,000 200,000 60,000 124,000

More information

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74 Ÿ ( ) œ 1,000,000 120,000 1,000,000 1,000,000 120,000 108,000 60,000 120,000 120,000 60,000 240,000 120,000 390,000 1,000,000 56,380,000 15. 2.13 36,350,605 3,350,431 33,000,174 20,847,460 6,910,000 2,910,000

More information

untitled

untitled š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000

More information

untitled

untitled š ( œ ) 4,000,000 52. 9.30 j 19,373,160 13. 4. 1 j 1,400,000 15. 9.24 i 2,000,000 20. 4. 1 22. 5.31 18,914,932 6,667,668 12,247,264 13,835,519 565,000 565,000 11,677,790 11,449,790 228,000 4,474 4,474

More information

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75 Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000

More information

<82CD82B582B28C4E20666F E646F7773>

<82CD82B582B28C4E20666F E646F7773> CA20Ⅱ/23Ⅱ 電気回路図 «««««««š«««« M コード機能一覧表 1 ž ž ž ž «ªªª h ««««««««««ªªªªªªªªª «««««ªªªªªªªªª «««««ªªªªª ªª «««««z«e u «««««~ z«e u ««««««e u «««««««««ªªªªªz «««««ªªªªª «««««««««ªªª ªª ««««««e u «««««~

More information

17CR n n n n n n n n n n n n n n n n n m PGM PGM o x å 1 9 0^. - ƒ E % M d w i k g «æ n u n u - p ç e l n n n E C 00-00-00 09-08-20 00-00 09-30 n n n n n n n m l n n n n 09-23#0008.5,780.360.360.360

More information

TELEMORE-IP(824) 取扱説明書

TELEMORE-IP(824) 取扱説明書 4 5 a 6 7 8 9 a a a a a 0 7 8 9 0 4 5 6 DEF ABC 6 MNO 5 JKL 4 GHI 9 WXYZ 8 TUV 7 PQRS 0 POWER ON STD BY a 7 8 9 0 4 5 6 DEF ABC 6 MNO 5 JKL 4 GHI 9 WXYZ 8 TUV 7 PQRS 0 a a a a a a a a a a a a a 4 a a a

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information

L KL B DK 0101S DK 1152S DK 1S DK 25S DK 32S DK 32S DK S DK S DK HM DK 75HM DK 75HM DK 75HM DK HM DK HM DK H3M DK 0HM DK 0H3M DK H3M DK 0H3M H U-1 U-

L KL B DK 0101S DK 1152S DK 1S DK 25S DK 32S DK 32S DK S DK S DK HM DK 75HM DK 75HM DK 75HM DK HM DK HM DK H3M DK 0HM DK 0H3M DK H3M DK 0H3M H U-1 U- L KL B DK 0101S DK 1152S DK 1S DK 25S DK 32S DK 32S DK S DK S DK HM DK 75HM DK 75HM DK 75HM DK HM DK HM DK H3M DK 0HM DK 0H3M DK H3M DK 0H3M H U-1 U- U-2 U-3 U-2 U-3 U-430 U-3 U-430 U-0 U-0 U-600 U-430

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

03_P055-084_坂井吉良.indd

03_P055-084_坂井吉良.indd r m m r m p y i y r r r yy m m m yy p p p y r r m m p p iey r y m y p r m p m m yy m C Cy i i y i y i i y i i y i C i y y i i i y i i C i yirmp i i y i C i y i irmp y i C i y i irmp i i i C i i irmp i

More information

P CS2.indd

P CS2.indd Series ø, ø, ø 27.2kg 11.3kg ø kg 35 30 25 20 15 10 5 0 27.2 11.3 58% 30.1 13.1 57% 1 1.6 1.6 1,500 1,200 1,000 500 0 0 15 30 45 60 75 90 400 300 200 100 & 0 0 400 800 1200 0 565 Series 0.005MPa 5mm/s

More information

a x x x x 1 x 2 Ý; x. x = x 1 + x 2 + Ý + x = 10 1; 1; 3; 3; 4; 5; 8; 8; 8; 9 1 + 1 + 3 + 3 + 4 + 5 + 8 + 8 + 8 + 9 10 = 50 10 = 5 . 1 1 Ý Ý # 2 2 Ý Ý & 7 7; 9; 15; 21; 33; 44; 56 21 8 7; 9; 15; 20; 22;

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

news23

news23 13 4 2 1,432 1210 3 20 4 811 4 2 4 4 2013 5 6 8 9 10 13 11 12 1310 12 13 14 15 14 15 15 16 17 21 22 23 1 2 37 12 10 3 12 8,887860 152 8,028 11 9 13 13 104 124 !!!!!!!!!!!!!!!!!!!! 1210 12 10 1,5881,432

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

2 ( ) ( ) { 5 0 ( ) ( ) ( ) ( ) 02 2 ( ) ( ) 29 (RisingNiigata ) ( ) ( ) (EPOCHAL )

2 ( ) ( ) { 5 0 ( ) ( ) ( ) ( ) 02 2 ( ) ( ) 29 (RisingNiigata ) ( ) ( ) (EPOCHAL ) 2 ( ) 20 9 ( ) 0 0 ( ) 202 4 4 (T S ) 40 7 (GROUND ZERO ) 0 20 22 ( ) 02 24 ( ) 6 8 2 204 ( ) 2 205 5 (Y ) 0 8 ( ) 206 42 (Y.Y LINK ) { 44 (J O K E R ) 207 47 ( TTS ) 04 50 ( ) 0 208 56 ( ) 402 40 05 06

More information

untitled

untitled Mail de ECO Professional ...1 EXCEL...2...3...4 EXCEL...6...7...8 EXCEL...9...10...11 EXCEL...12...13...14 EXCEL...16...21...23...25...33...34...37...38...40...44 EXCEL OK 1 EXCEL EXCEL MailDeEco No 1

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

応力とひずみ.ppt

応力とひずみ.ppt in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

2変量データの共分散・相関係数・回帰分析

2変量データの共分散・相関係数・回帰分析 2, 1, Excel 2, Excel http://hig3.net ( ) L04 2 I(2017) 1 / 24 2 I L04(2017-10-11 Wed) : Time-stamp: 2017-10-10 Tue 23:02 JST hig L03-Q1 L03-Q2 Quiz : 1.6m, 0.0025m 2, 0.05m. L03-Q3 Quiz : Sx 2 = 4, S x

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

untitled

untitled [email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

橡Deskの操作.PDF

橡Deskの操作.PDF 1.1 Desk Desk Desk Desk [ ] [ ] [Fuji Xerox DocuWorks] [DocuWorks Desk] [DocuWorks Desk] Desk Desk [ ] [DocuWorks Desk ] DocuWorks Desk Desk 2 1.2 Desk 1.2 Desk Desk Desk DocuWorks E 3 DocuWorks DocuWorks

More information

IT A-D A-D A-D A-DCD LSI PCM PCM A-D I T master master journeymanapprentice Boys be ambitious JABEE JABEEJapan Accreditation Board for Engineering Education JABEE JABEE JABEE JABEE

More information

Microsoft Word - 計算力学2007有限要素法.doc

Microsoft Word - 計算力学2007有限要素法.doc 95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y

More information

2 2000 9 2 Key Word 1 2 3 12 3 4 5

2 2000 9 2 Key Word 1 2 3 12 3 4 5 Encore PR SSIS PR PR PR 23 2 2000 9 2 Key Word 1 2 3 12 3 4 5 1 2 3 4 1 2 3 4 key word 4 JR JFE 2001 NECTI OJT GE Encore 1 1977 1981 1980 1993 R RY 1991 10 Y 19723 1976 Y 1998 YR 2004 10 11R 9R R R Y YY

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

ZoomMeeting_BusinessEnterpriseユーザーマニュアル(Android編)

ZoomMeeting_BusinessEnterpriseユーザーマニュアル(Android編) ZoomMeeting Business/Enterprise ユーザーマニュアル (Android 編 ) 2017 年 11 1 NEC Networks & System Integration Corporation 2017 改版履歴 版数発 改版内容作成者 1.0 2017/11/30 初版発 NESIC GPS 部 2 NEC Networks & System Integration

More information

TTC TTC STANDARD JT-G957 Optical Interface for Equipments and Systems Relating to the Synchronous Digital Hierarchy THE TELECOMMUNICATION

TTC TTC STANDARD JT-G957 Optical Interface for Equipments and Systems Relating to the Synchronous Digital Hierarchy THE TELECOMMUNICATION TTC TTC STANDARD JT-G957 Optical Interface for Equipments and Systems Relating to the Synchronous Digital Hierarchy 3 200 4 9 THE TELECOMMUNICATION TECHNOLOGY COMMITTEE 2. 2.2 2.3 () (a) (2) (a) (b) (c)

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

STOCK SPRINGS

STOCK SPRINGS 0..107. Vol.19 T E L : 03--12 FAX : 03--1133 http : //www.samini.co.jp 1 TEL.03--12 FAX.03--1133 SPRING-NET http:// 2777 019 37 02239 0009 77 2 A01H1 00193-13-1 11-11-99 B01B1 00 22-2-22 017 01SUSSUS

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

鬆徒労苦衷有迷禍荷苦痛

鬆徒労苦衷有迷禍荷苦痛 J J.1 J.1.1 (1) J.1 1 J.1 1 300 mm 2 55 mm 300 mm J.2 FEM (Truss-P.exe) 827 828 J. 10 mm 3 1 5 mm J.1 24.1 g 2.8 kg J.2 Visual BASIC Euler J.1 1 J.3 2007 1 3 1 mm J.3 J.1 http://mechanics.civil.tohoku.ac.jp/sozo/

More information

FinePix A330 A340 使用説明書

FinePix A330 A340 使用説明書 1 2 3 4 5 6 BL00359-100(1) e 2 3 1 2 a 3 B e d y * q D A B o w o u u u i g Y B r y w 4 4 6 F 5 6 1 2 3 4 5 6 5 e y y y y y y y y y 6 y y y y y y y y y y y y y x x x x x x x x x x 7 d a b c 8 9!@ 0! 0@!

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

FinePix F450 使用説明書

FinePix F450 使用説明書 1 2 3 4 5 BL00392-101(1) 1 2 a w o 2 3 B e d b d v c n p y S J * q s a m,. / D A B o i g t t Y p u u U 4 fi F 5 B r p y w 1 2 3 4 5 3 e y y y y y y y y y 4 x p x x x x x x x x x x x x 5 d a b c 6 01 01

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

P. 9 P. 25 P. 49 P. 45

P. 9 P. 25 P. 49 P. 45 AD WOOD MATERIALS 2004-2005 AD WOOD MATERIALS 2004-2005 P. 9 P. 25 P. 49 P. 45 CONTENTS 3 5 New 7 41 45 7 New 8 9 13 15 17 20 48 49 21 51 53 23 25 27 29 New 30 33 35 36 37 2 OLW-130 OLW-130 OLW-130-PH01

More information

MWATCHAndroidロガーマニュアル

MWATCHAndroidロガーマニュアル Android Rev 1.0 2014 1 31 2 2 3 3 3 4 6 10 10 10 13 13 14 CSV 15 16 PC 18 19 19 CH 21 22 24 25 Copyright All rights reserved WADA Aircraft Technology Inc 1 MWATCH Android PC OS MWATCH Logger 3 6ch 1kHz

More information

I

I I [email protected] 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

FinePix S5000 使用説明書

FinePix S5000 使用説明書 BL00260-101(2) 1 2 2 3 B p y S J B? m,. / N M < > e d x b d c n f f j k h D * + A j G z B r r 4 6 F 5 B o i T t t p u u U 3 e y y y y y y y y y 4 x x p x x x x x x x x x x x x 5 6 abdc d c 7 1 1 2! 3!

More information

デバイスネットマスターユニットJW-20DN2ユーザーズマニュアル

デバイスネットマスターユニットJW-20DN2ユーザーズマニュアル JW-20DN2 JW-20DN2 MS NS SD RD FT PT SL S7 S6 S5 S4 S3 S2 S1 S0 FG 使用する前に必ずお読みください 本機はスキャンリスト作成で登録されたスレーブと通信します スレーブが通信ラインからハード的に切り離されるとスレーブよりレスポンスがない為 通信異常となります スレーブを一時的に切り離したり 接続しても本機が異常とならないように下記ソフトバージョンより

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

/...8 ISO i K UHD JPEG...28 HDMI K UHD..

/...8 ISO i K UHD JPEG...28 HDMI K UHD.. Professional Revision 1.0 ...4...6...8 /...8 ISO...10...11...12...13...13...13...14...14...18...22 i...23...24...25...26 4K UHD JPEG...28 HDMI...29...32...32...32...34 4K UHD...35 2 ...37...37...37...38...38...39

More information