t sex N y y y Diff (1-2)

Size: px
Start display at page:

Download "t sex N y y y Diff (1-2)"

Transcription

1 Armitage t 1.2 SAS Proc GLM

2 t sex N y y y Diff (1-2) t t Pr > t y Pooled Equal < t p t 2

3 sex N x x x Diff (1-2) t t Pr > t x Pooled Equal < kg p * *2 *1 *2 3

4 F Pr > F Model <.0001 Error Corrected Total Type III F Pr > F sex x <.0001 sex p x 3 model / solution clparm *3 t Pr > t 95% Intercept B sex B sex B..... x < Note X X B *4 x *5 100 *3 solution clparm 95 *4 Note 0 B *5 (better ) PPK 4

5 2.1.4 t t t t *6 Error 37.3 = 6.1 * y t 4 y *6 *7 Error 5

6 t dose N y y y Diff (1-2) t t Pr > t y Pooled Equal *8 t p x y x x 5 x x t *

7 dose N x x x Diff (1-2) t t Pr > t x Pooled Equal <.0001 x y x 6 x y 4 x F Pr > F Model <.0001 Error Corrected Total

8 Type III F Pr > F dose <.0001 x <.0001 dose x 1 model /solution clparm t Pr > t 95% Intercept B < dose B < dose B..... x < Note X X B y x y = x (= x) y = x (= x) *9 x 6.45 x 1 y 2.91 x x x 1 * 10 2 x Proc MEANS : x x N x = ŷ = x = ŷ = x = Proc GLM model lsmeans lsmeans dose; * 11 2 dose y *9 2 *10 *11 8

9 2.2.4 t t t t 2.5 x x Error 7.7 = y x x y x BioS (2) * 12 (1) (2) (3) (1), (2) 1 2 (3) * 13 (1) (3) *12 Greenland, S. and Robins, J. M. Identifiability, exchangeability, and epidemiological confounding. International Journal of Epidemiology 1986;15: Rothman, K. J., Greenland, S. Modern Epidemiology, 2nd ed. Philadelphia: Lippincott and Raven, *13 9

10 3 3 * 14 * 15 (2) x y 60 y 7 y y t dose N y y y Diff (1-2) t t Pr > t y Pooled Equal p y x *14 *15 10

11 8 x 1 2 t dose N x x x Diff (1-2) t t Pr > t x Pooled Equal y x 11

12 9 x y * 16 2 * 17 F Pr > F Model <.0001 Error Corrected Total Type III F Pr > F dose x <.0001 dose p t Pr > t Intercept B <.0001 dose B dose B... x <.0001 Note X X B *16 y *

13 y = x (= x) y = x (= x) x 6.06 x Proc MEANS : x x N x = 5.07 * 18 2 ŷ = x = ŷ = x = SAS model lsmeans dose; 2 dose y t t t t Error = y y x x 3.3 *18 13

14 = * x * 20 x 4 * 21 *19 1 t *20 t x 6.1 =0 *21 14

15 1 SAS SAS y x dose proc glm data=d1; class dose; model y= dose x / solution clparm ; lsmeans dose; run; quit; model solution clparm dose 2 lsmeans 2 t t t y 11, y 12,, y 1n N(µ 1, σ 2 ) y 21, y 22,, y 2n N(µ 2, σ 2 ) y ij = µ i + ɛ ij ( ɛij N(0, σ 2 ) ) i = 1, 2, j = 1,, n i j x ij y ij = µ i + βx ij + ɛ ij ( ɛij N(0, σ 2 ) ) i = 1, 2, j = 1,, n ( ) x ij x y x 15

16 3 1 2 x 10 x * 22 2 x *22 y x = 10 x y 2 x x x x y 16

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

3 3.1 *2 1 2 3 4 5 6 *2 2

3 3.1 *2 1 2 3 4 5 6 *2 2 Armitage 1 2 11 10 3.32 *1 9 5 5.757 3.3667 7.5 1 9 6 5.757 7 7.5 7.5 9 7 7 9 7.5 10 9 8 7 9 9 10 9 9 9 10 9 11 9 10 10 10 9 11 9 11 11 10 9 11 9 12 13 11 10 11 9 13 13 11 10 12.5 9 14 14.243 13 12.5 12.5

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

10 2 2 10 6.5 78 1 65 / 30 / - 2 -

10 2 2 10 6.5 78 1 65 / 30 / - 2 - - 1 - 10 2 2 10 6.5 78 1 65 / 30 / - 2 - 3 3 30 8 4 8 6 11 14 45 14 7 8 1-3 - 4 1 () 20 4 9 4 9 3 9 4 PR 4 3-4 - - 5 - PR 15 4 PR 7 8 4 9 10-6 - 9 10 9 10 4 9 10 3 9 10 9 9 9 10 PR 1-7 - PR - 8 - 30 100-9

More information

1 2 1 3 2 4 22 NPO PR NPO NPO 22 10 4 2,000kg 1kg 5 2 1 4,000 20,000 26 33 27 24 3 19 24 3 4 3 4 3 () 34 3 4 5 23 3 17 23 20 30 1 1 877g/ 3 24 3 1 1 28 897g/ 33 850g/ 22 23 30 1 1 510g/ 22 23 3 24

More information

<4D F736F F F696E74202D204D C982E682E892B290AE82B582BD838A E8DB782CC904D978A8BE68AD482C98AD682B782E988EA8D6C8E402E >

<4D F736F F F696E74202D204D C982E682E892B290AE82B582BD838A E8DB782CC904D978A8BE68AD482C98AD682B782E988EA8D6C8E402E > SAS ユーザー総会 2017 Mantel-Haenszel 法により調整したリスク差の信頼区間に関する一考察 武田薬品工業株式会社日本開発センター生物統計室佐々木英麿 舟尾暢男 要旨 Mantel-Haenszel 法により調整したリスク差に関する以下の信頼区間の算出方法を紹介し 各信頼区間の被覆確率をシミュレーションにより確認することで性能評価を行う Greenland 信頼区間 Sato 信頼区間

More information

共分散分析 ANCOVA

共分散分析 ANCOVA SASによる 共 分 散 分 析 浜 田 知 久 馬 東 京 理 科 大 学 ANCOVA usng SAS Chkuma Hamada Tokyo Unversty of Scence 発 表 構 成 医 薬 研 究 における 現 状 共 変 量 調 整 の 役 割 交 絡 とは 共 変 量 調 整 の 原 理 共 分 散 分 析 のモデルと 数 理 SASによる 解 析 と 解 釈 共 分 散

More information

(個別のテーマ) 放射線検査に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故 - 131 - III - 132 - - 133 - III - 134 - - 135 - III - 136 - - 137 - III - 138 - - 139 - III - 140 - - 141 - III - 142 - - 143 - III - 144 - - 145 - III - 146 - - 147 - III - 148 - - 149 - III - 150 - -

More information

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 薬剤に関連した医療事故 - 67 - III - 68 - - 69 - III - 70 - - 71 - III - 72 - - 73 - III - 74 - - 75 - III - 76 - - 77 - III - 78 - - 79 - III - 80 - - 81 - III - 82 - - 83 - III - 84 - - 85 - - 86 - III - 87 - III - 88 - - 89

More information

untitled

untitled ,337 37 35 0,349,09 35 55 988 3 0 0 3,387 7 90 0,369,46 5 57 5 0 90 38 8,369 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 8 9 30 3 3 5,400 7,00 9,000 0,800,600 4,400 6,00 8,000 9,800,600 3,400 5,00 7,000 8,800

More information

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767,

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767, 02 02 02 180,771 07 02 01 1,377 07 02 02 1,051,703 07 02 05 220,099 07 03 01 926,597 08 02 04 1,877,566 08 04 02 2,973,603 08 05 03 672,950 10 06 03 778,433 10 06 04 735,789 10 06 06 225,392 10 06 07 365,442

More information

PowerPoint Presentation

PowerPoint Presentation 2 9/ 3 3 9/ 9 4 5 , PR () 6 ,,, (11) 7 PR 8 9 10 11 TEL. 106 8/131512/291/3 TEL. 107 12/291/3 12 http://www.f-turn.jp/ 13 21 4 21 14 200910 U 200911 U 200911 20102 15 20102 PR 20103 20103 16 20103 20104

More information

取扱説明書

取扱説明書 ED-601 ED-501 ED-401 2 3 4 23 14 5 6 18 10 7 1 2 6 3 4 8 9 16 16 16 12 1 2 18 10 2 1 5 12 11 1 2 1 2 12 1 2 13 16 14 3 2 4 1 1 2 16 3 4 18 15 1 2 16 2 3 1 1 2 3 18 17 18 22 19 D A C 20 A B 22 B C D 22

More information

共分散分析 ANCOVA

共分散分析 ANCOVA A による共分散分析 浜田知久馬 東京理科大学 ANCOVA usng A Chkuma Hamada Tokyo Unversty of cence A による 共分散分析 東京理科大学 浜田知久馬 UGIJ009 009.7.3 金 発表構成 医薬研究における現状 共変量調整の役割 交絡とは 共変量調整の原理 共分散分析のモデルと数理 Aによる解析と解釈 共分散分析の適用例 3 医学論文におけるサブグループ解析

More information

16 41 17 22 12 10

16 41 17 22 12 10 1914 11 1897 99 16 41 17 22 12 10 11 10 18 11 2618 12 22 28 15 1912 13 191516 2,930 1914 5,100 43 1.25 11 14 25 34364511 7.54 191420 434849 72 191536 1739 17 1918 1915 60 1913 70 10 10 10 99.5 1898 19034.17.6

More information

3.ごみの減量方法.PDF

3.ごみの減量方法.PDF - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - ( 100 ( 100 - 13-123,550,846 111,195,762 92,663,135 ( 12 25 37 49.2 16 33 49 65.6 15 30 44 59.0 2.5kg) ( 5kg) ( 7.5kg) ( k ( 123,550,846 111,195,762 92,663,135 (

More information

製品案内 価格表 2014/4/1

製品案内 価格表 2014/4/1 4 (17) 3 43 5/20370/ 231(504,150) 11 12 10 14-16 10 3 100 17 100kg 5-6 3 13 3 18 18 # # # # #$$ %&$ ' ()* +,-% ' #). +,-%'% / ' # # #$ %&&&'( %)* +'(#$ #$ %&&&'( ++,-). +'(#$ #$ /'( + /0)- +'(#$ %&&&'(

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

スライド 1

スライド 1 線形モデルにおける CLASS ステートメントの機能 吉田早織 1 魚住龍史 2 1 日本化薬株式会社医薬データセンター 2 京都大学大学院医学研究科 The fascinating features for the CLASS in the context of linear models Saori Yoshida 1 and Ryuji Uozumi 2 1 Clinical Data Management

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri Wilcoxon H23 BioS 1 Wilcoxon 2 2.1 1 2 1 0 1 1 5 0 1 2 7 0 1 3 8 1 1 4 12 0 2 5 2 0 2 6 3 1 2 7 4 1 2 8 10 0 Wilcoxon 2.2 S 1 t S 2 t Wilcoxon H 0 H 1 H 0 : S 1 t S 2 t H 1 : S 1 t S 2 t 1 *1 *2 2.3 2.3.1

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

DATA Sample1 /**/ INPUT Price /* */ DATALINES

DATA Sample1 /**/ INPUT Price /* */ DATALINES 3180, 3599, 3280, 2980, 3500, 3099, 3200, 2980, 3380, 3780, 3199, 2979, 3680, 2780, 2950, 3180, 3200, 3100, 3780, 3200 DATA Sample1 /**/ INPUT Price @@ /* @@1 */ DATALINES 3180 3599 3280 2980 3500 3099

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

3675-433897418-1.pdf

3675-433897418-1.pdf A : : : : : : : : : : PR PR NHK 2 PR PR 3 1954 7 4 5 9 12,000 12 100 2 2 11 4 5 6 7 / PR 8 9 10 11 1952 ( ) 2008 2009 2012 NHK km m m 12 m km km kg kg 13 % 14 15 1959 5 20 8 17100kg 400kg How much? 60

More information

PROC PWENCODE IN=sastrust1 ; RUN ;

PROC PWENCODE IN=sastrust1 ; RUN ; PROC PWENCODE IN=sastrust1 ; RUN ; 1 PROC PWENCODE IN="sastrust1" ; 2 RUN ; {sas001}c2fzdhj1c3qx /* */ LIBNAME audit 'Lev1 SASMain MetadataServer audit repos1'; /* ID */ PROC PRINT DATA=audit.person; VAR

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8 15 7 8,000 15 4 1 0 5 15 4 2 15 10 1 15 4 1 6 11 4,500 3,500 16 26 35 27 34 16 2 19 16 2 24 16 3 15 1 2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1%

More information

新入_本文.smd

新入_本文.smd 52 28 220 28 4 1 017-777-1511 2 2 8 2 9 8 9 47.2% 12.8% 11.5% 6.0% 4 2 (49.6%)(13.0%) (14.7%) (7.4%)(8.4%) (52.3%)(9.1%) (11.4%) (10.0%) 33.0% 23.4% 15.6% 9.6% (26.0%) (18.3%) (46.5%) (30.0%) (20.0%) 2

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information