LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Size: px
Start display at page:

Download "LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ"

Transcription

1 8 + J/ψ ALICE B597 : : : 9

2 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

3 (QGP) LHC ALICE V IS AliRoot Dimuon (Event mixing technique) (Like-sign method) acceptance efficiency (trigger efficiency)

4 acceptance efficiency Raw yield

5 [ LHC [ LHC ( )[ ALICE [ [ V IS [ J/ψ J/ψ J/ψ 4 < y <.5 J/ψ J/ψ J/ψ J/ψ acceptance efficiency J/ψ J/ψ p ( ) p ( ) PHENIX + GeV [ pol() pol(4) pol(5) pol(6) J/ψ J/ψ raw yield event mixing acceptance efficiency J/ψ like-sign method acceptance efficiency J/ψ ALICE LHCb J/ψ [ [9 / event mixing acceptance efficiency J/ψ like-sign method acceptance efficiency J/ψ

6 . 4 W Z (Quantum Chromo Dynamics, QCD) 4 ( ) c c J/ψ u d :. (QGP) (QGP) QGP. u d MeV/c u d 6

7 GeV/c QGP : [.4 u d QCD u d.5 ρ ϕ ω QGP QGP 7

8 QGP.6 QGP RHIC LHC.7 (rapidity, y) y = lne + p z = ln E + p z E p z m + p = tanh ( p z E ) () z p p = p x + p y y y p z /E z β z = v z /c z y = tanh (β) y y y z (pseudorapidity, η) η = tanh ( p z p ) = tanh (cosθ) () θ z θ m p E p.8 + J/ψ J/ψ 8

9 . LHC LHC (Large Hadron Collider) LHC (CERN) LHC ALICE CMS ALAS LHCb LHCf OEM 6 : LHC [ 4: LHC ( )[ 9

10 . ALICE ALICE (A Large Ion Collider Experiment) LHC QGP () (.9 < η <.9) () ( 4 < η <.5) () 5: ALICE [4. ALICE 4 < η < m 4 GeV/c

11 .. 5 µm m..5 ns 6: [5.4 V V z = 88cm VC.7 < η <.7 z = 9cm VA.8 < η < 5.

12 .5 z = 7cm C. < η <. z = 7cm A 4.6 < η < IS IS (Inner racking System) SPD(Silicon Pixel Detector) SDD(Silicon Drift Detector) SSD(Silicon Strip Detector) 6 7: V IS [6

13 . AliRoot AliRoot Root ALICE AliRoot AliGenBox ALICE AliRoot. ALICE 5 s = ev + J/ψ.. J/ψ 8: J/ψ 9: J/ψ... + VC VA

14 .. Dimuon + ϕ ω J/ψ J/ψ J/ψ GeV/c.4 J/ψ J/ψ M J/ψ E J/ψ p J/ψ M µ E µ p µ E J/ψ = M J/ψ + p J/ψ () (4) (5) () E J/ψ = E µ + + E µ (4) p J/ψ = p µ + + p µ (5) MJ/ψ = E µ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (6) J/ψ M J/ψ = Eµ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (7) ( 4 < η <.5) Dimuon.5 J/ψ J/ψ 4

15 .5. (Event mixing technique) (mixed event) N same + = N same + S N mixed + (8) (same event) (unlike-sign) N mixed + mixed event unlike-sign S N same LS dm S = N mixed + dm (9) N same LS same event like-sign mixed event unlike-sign.5. (Like-sign method) (like-sign) J/ψ R = N+ same R N++ same N same () N++ same same N like-sign N++ same N same (++) ( ) R R = N mixed + N++ mixed N mixed () R µ + µ N + mixed mixed N mixed event unlike-sign like-sign N mixed ++ mixed event like-sign unlike-sign same event like-sign 5

16 .6 exp( (x x) σ ) ( x x f(x; α, n, x, σ, N) = N σ > α) ( n α )n exp( α ) ( n α α x x σ ) n ( x x σ α) () J/ψ ( 5σ +σ) J/ψ J/ψ σ 5σ.7 acceptance efficiency acceptance efficiency J/ψ acceptance ( 4 < y <.5) J/ψ efficiency J/ψ acceptance efficiency J/ψ acceptance efficiency = J/ψ 4 < y <.5 J/ψ ().8 (trigger efficiency) acceptance efficiency J/ψ ϵ J/ψ J/ψ trigger = J/ψ (4) (5) ϵ µ trigger = p > GeV/c (6) (7) 6

17 .9 d σ dp dy = σ MB p+p N event Rf R B d N dp dy (8) σ σ MB p+p + N event R B (5.9.6)% [ N (Raw yield) Rf Rejection factor + Dimuon Dimuon Rejection factor Dimuon + σ MB = (57.8.) mb [ N event 999 [9 Dimuon N event =. 7 L int = 46.7nb σ MB σ MB = Rf N event L int (9) Rf Rf = E d σ dp = σp+p MB d N πp N event Rf R B dp dy () 7

18 ( ) ( ) J/ψ J/ψ [(4MeV/c ).6.4. distribution ( < p < GeV/c) χ / ndf.8 / 5 Mean.5. σ.67.8 N [(4MeV/c ).5.5 distribution ( < p < GeV/c) χ / ndf. / 5 Mean.. σ N M [GeV/c M [GeV/c [(4MeV/c ).5 distribution ( < p < GeV/c) 6.66 / 5 Mean.. σ.647. N 8.6 [(4MeV/c ).5 distribution ( < p < 4 GeV/c) 4.74 / 5 Mean.. σ N M [GeV/c M [GeV/c [(4MeV/c ) distribution (4 < p < 5 GeV/c) 9.48 / 5 Mean.. σ N [(5MeV/c )..8 distribution (5 < p < 6 GeV/c) 4.4 / Mean.4.4 σ N M [GeV/c M [GeV/c 8

19 ) [(5MeV/c distribution (6 < p < 7 GeV/c).8 / Mean.99.4 σ N ) [(5MeV/c distribution (7 < p < 8 GeV/c) 7.7 / Mean..5 σ N M [GeV/c M [GeV/c ) [(5MeV/c 5 distribution (8 < p < 9 GeV/c).84 / Mean.95.5 σ N 4.. ) [(5MeV/c 4 distribution (9 < p < GeV/c) 7.4 / Mean.9.7 σ N M [GeV/c M [GeV/c : ) [(4MeV/c.6.4. distribution ( < p < GeV/c) χ / ndf.66 / 5 Mean.5. σ.67.7 N ) [(4MeV/c.5 distribution ( < p < GeV/c) 4.8 / 5 Mean.4. σ N M [GeV/c M [GeV/c ) [(4MeV/c distribution ( < p < GeV/c) 9.8 / 5 Mean.. σ N 4. ) [(4MeV/c.5 distribution ( < p < 4 GeV/c) 9.5 / 5 Mean.4. σ.664. N M [GeV/c M [GeV/c 9

20 [(4MeV/c ) distribution (4 < p < 5 GeV/c) / 5 Mean.97. σ.66.5 N [(5MeV/c )..8 distribution (5 < p < 6 GeV/c).48 / Mean.7.5 σ N M [GeV/c M [GeV/c [(5MeV/c ) distribution (6 < p < 7 GeV/c) / Mean.96.5 σ N [(5MeV/c ) distribution (7 < p < 8 GeV/c).75 / Mean.9.6 σ.55.6 N M [GeV/c M [GeV/c [(5MeV/c ) 5 5 distribution (8 < p < 9 GeV/c).4 / Mean.9.5 σ N 9..5 [(5MeV/c ) distribution (9 < p < GeV/c) 4.84 / Mean.9.8 σ N M [GeV/c M [GeV/c : 4.. acceptance efficiency J/ψ ( 4 < y <.5) J/ψ J/ψ J/ψ J/ψ

21 [(GeV/c) dn/dp 5 Number of J/ψ (simulation) [(GeV/c) 4 Number of detected J/ψ aaa Entries Mean.9 RMS.96 dn/dp p [GeV/c p [GeV/c : J/ψ : J/ψ 4 < y <.5 J/ψ J/ψ J/ψ acceptance efficiency acceptance x Efficiency acceptance x efficiency e_ls Entries Mean 6.49 RMS p [GeV/c 4: J/ψ acceptance efficiency 4.. J/ψ

22 trigger efficiency of J/ψ rigger efficiency of J/ψ tels Entries Mean 5.48 RMS J/ψ p [GeV/c 5: J/ψ 4 5 acceptance efficiency J/ψ p GeV/c p < GeV/c J/ψ GeV/c 7 GeV/c J/ψ p GeV/c θ 6 J/ψ p GeV/c [GeV/c muon p dimuon p vs single muon p hist Entries 6 Mean x.94 Mean y.8 RMS x.88 RMS y [GeV/c dimuon p 6: J/ψ p ( ) p ( ) J/ψ p GeV/c

23 p GeV/c rigger efficiency of single muon trigger efficiency of single muon µ p [GeV 7:

24 distribution < p < [GeV/c ) distribution < p < [GeV/c +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique M [GeV/c M [GeV/c distribution < p < [GeV/c ) +background ) [(5MeV/c Event mixing technique distribution < p < 4 [GeV/c +background [(5MeV/c Event mixing technique M [GeV/c M [GeV/c distribution 4 < p < 5 [GeV/c distribution 5 < p < 6 [GeV/c ) +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique M [GeV/c M [GeV/c 4

25 ) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Event mixing technique ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Event mixing technique M [GeV/c M [GeV/c ) distribution 8 < p < 9 [GeV/c +background ) distribution 9 < p < [GeV/c +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique ) M [GeV/c M [GeV/c 8: [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) M [GeV/c M [GeV/c [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < 4 [GeV/c +background Like-sign method M [GeV/c M [GeV/c 5

26 ) distribution 4 < p < 5 [GeV/c +background ) distribution 5 < p < 6 [GeV/c +background [(5MeV/c Like-sign method [(5MeV/c Like-sign method M [GeV/c M [GeV/c ) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Like-sign method ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Like-sign method M [GeV/c M [GeV/c distribution 8 < p < 9 [GeV/c ) +background ) [(5MeV/c Like-sign method distribution 9 < p < [GeV/c +background [(5MeV/c Like-sign method M [GeV/c M [GeV/c 9: cc bb cc bb D B B D D + = cd, D = cd, D = cu, D = cu D (9..7)%[ K - 6

27 : PHENIX + GeV [4 7

28 J/ψ 4 J/ψ 4 f n (x) = Crystalball function + pol(n) (n =, 4, 5, 6) () n (pol(n) = p i x i ) () 4 pol(n) J/ψ i= ) [(5MeV/c 5 4 distribution < p < [GeV/c χ / ndf. /. Mean..75 σ.6 N ) [(5MeV/c / 7 Mean.. σ N distribution < p < [GeV/c M µ [GeV/c + µ M µ [GeV/c + µ - ) [(5MeV/c distribution < p < [GeV/c 87.5 /.4 Mean σ.44 N ) [(5MeV/c distribution < p <4 [GeV/c 7.4 /. Mean..75 σ.58 N M µ [GeV/c + µ M µ [GeV/c + µ - ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 89.5 / Mean.. σ N ) [(5MeV/c distribution 5 < p <6 [GeV/c 6.5 / Mean.. σ N M µ [GeV/c + µ [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c. / Mean.. σ N ) [(5MeV/c 4 8 distribution 7 < p <8 [GeV/c 75.7 / Mean.. σ.688. N M + [GeV/c [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c / ndf χ 4.6 /.4 Mean..648 σ.5 N ) [(5MeV/c distribution 9 < p < [GeV/c 48.8 / Mean.. σ.7.6 N [GeV/c [GeV/c : pol() 8

29 ) [(5MeV/c 5 4 distribution < p < [GeV/c 9.8 / Mean.8. σ.64.5 N ) [(5MeV/c distribution < p < [GeV/c / Mean.5. σ.6.8 N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 87.4 / 7 Mean.4. 6 σ N distribution < p < [GeV/c ) [(5MeV/c distribution < p <4 [GeV/c 75.9 / Mean.. σ N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 54.8 / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 8.7 / Mean.. σ N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c 87. / Mean.5. σ N ) [(5MeV/c distribution 7 < p <8 [GeV/c 77.7 / Mean.. σ N M µ [GeV/c + µ M [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 64. / Mean.. σ.54.9 N ) [(5MeV/c distribution 9 < p < [GeV/c 5. / Mean.. σ N M [GeV/c M [GeV/c : pol(4) 9

30 ) [(5MeV/c 5 4 distribution < p < [GeV/c 488. / Mean.8. σ.67.5 N ) [(5MeV/c 8 / ndf χ 6.6 /.6 Mean. 7 σ.69.4 N distribution < p < [GeV/c M µ + µ [GeV/c M µ + µ [GeV/c ) [(5MeV/c 7 / ndf χ 85.8 / Mean.. σ N distribution < p < [GeV/c ) [(5MeV/c distribution < p <4 [GeV/c 79.4 / Mean.. σ N M µ + µ [GeV/c M µ + µ [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 66. / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 58.5 / Mean.99. σ N M µ + µ [GeV/c [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 99. / Mean.5. σ N ) [(5MeV/c 4 / ndf χ 48.9 /. Mean. σ.75.4 N distribution 7 < p <8 [GeV/c M µ + µ [GeV/c [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 69.4 / Mean.. σ.59. N ) [(5MeV/c distribution 9 < p < [GeV/c 54.4 / Mean.. σ N [GeV/c [GeV/c : pol(5)

31 ) [(5MeV/c 5 4 distribution < p < [GeV/c 4.4 / Mean.8. σ.66.5 N ) [(5MeV/c distribution < p < [GeV/c 88 / Mean.5. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c distribution < p < [GeV/c 8.8 / Mean.. σ N ) [(5MeV/c distribution < p <4 [GeV/c 84.4 / Mean.. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 5.4 / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c / Mean.99. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 4.9 / Mean.. σ N ) [(5MeV/c distribution 7 < p <8 [GeV/c 54.4 / Mean.. σ.695. N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 76.7 / Mean.. σ N ) [(5MeV/c distribution 9 < p < [GeV/c 58.4 / Mean.98. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c 4: pol(6)

32 9 J/ψ 46 counts [a.u. 44 < p < [GeV/c num Entries 4 Mean.97 RMS.5 counts [a.u. 6 4 < p < [GeV/c num Entries 4 Mean.994 RMS f (x) f 4(x) f 5(x) (x) f 6 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u. 8 < p < [GeV/c num Entries 4 Mean. RMS.8 counts [a.u < p < 4 [GeV/c num Entries 4 Mean.995 RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u < p < 5 [GeV/c num Entries 4 Mean.5 RMS.9 counts [a.u. 7 5 < p < 6 [GeV/c num Entries 4 Mean RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6

33 counts [a.u < p < 7 [GeV/c num Entries 4 Mean.998 RMS. counts [a.u. 4 7 < p < 8 [GeV/c num Entries 4 Mean. RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u < p < 9 [GeV/c num Entries 4 Mean.99 RMS. counts [a.u. 9 < p < [GeV/c num Entries 4 Mean. RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 5: J/ψ J/ψ pol() ( 5 ) J/ψ pol() (mean) RMS( 5 )/mean J/ψ Raw yield Raw yield

34 [(GeV/c) Raw yield of J/ψ stdsys Entries Mean.6 RMS.5 dn/dp p [GeV/c 6: J/ψ raw yield 4.. J/ψ 7 acceptance efficiency 8 dy) [µb/(gev/c) production cross section cross_section Entries Mean.67 RMS.8 σ/(dp d p [GeV/c 7: event mixing acceptance efficiency J/ψ 4

35 dy) [µb/(gev/c) production cross section cross_section Entries Mean.665 RMS.79 σ/(dp d p [GeV/c 8: like-sign method acceptance efficiency J/ψ 9: ALICE LHCb J/ψ [9 ( 9[9) 7,8 5

36 ratio.4. ratio p [GeV/c : [9 / [9 % [ c [µb GeV Invariant production cross section cross_section Entries Mean.79 RMS.4 E d σ dp dy p [GeV/c : event mixing acceptance efficiency J/ψ 6

37 - [µb GeV c c Invariant production cross section cross_section Entries Mean.784 RMS.49 E d^σ dp dy p [GeV/c : like-sign method acceptance efficiency J/ψ 7

38 5 ALICE s = ev + acceptance efficiency s = ev + J/ψ ( < p < (GeV/c)) ( 4 < y <.5) 4 8

39 6 4 9

40 [,4 [ LHC ALICE -ALICE JAPAN- [ (4),, [4 he ALICE Collaboration ChapExperiment-en.html [5 he ALICE Collaboration, (), Addendum of the Letter Of Intent for the Upgrade of the ALICE Experiment : he Muon Forward racker [6 ALICE MAERS, (), he present Inner racking System - Steps forward!, [7 he ALICE Collaboration, (4), Performance of the ALICE Experiment at the CERN LHC [8 he ALICE Collaboration, (4), ALICE technical Design Report on Forward Detectors: FMD, and V [9 he ALICE Collaboration, (7), Energy dependence of forward-rapidity J/ψ and ψ(s) production in pp collisions at the LHC [ Particle Data Group, (5), Review of Particle Physics CHARMED MESONS [ Particle Data Group, (5), Review of Particle Physics BOOM MESONS http: //pdg.lbl.gov/5/tables/rpp5-tab-mesons-bottom.pdf [ he LHCb Collaboration, (5), Measurement of forward J/ψ production crosssection in pp collisions at s = ev [ he ALICE Collaboration, (6), ALICE luminosity determination for pp collisions at sqrts =ev [4 he PHENIX Collaboration, Yue Hang Leung, (7), Studying heavy flavor production via unlike-sign and like-sign dimuon spectra in p+p collisions at GeV in the PHENIX Experiment, 445/contributions/588/attachments/4884/56/yuehang_ qmposterdraft_v.pdf 4

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Electron Ion Collider と ILC-N 宮地義之 山形大学

Electron Ion Collider と ILC-N 宮地義之 山形大学 Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information