鉄筋単体の座屈モデル(HP用).doc

Similar documents
重力方向に基づくコントローラの向き決定方法

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Gmech08.dvi

untitled

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

dvipsj.8449.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

量子力学 問題

Gmech08.dvi

all.dvi

meiji_resume_1.PDF

QMI_10.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Note.tex 2008/09/19( )

i

untitled


QMII_10.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.



untitled

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

TOP URL 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

プリント

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

第3章

85 4

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

³ÎΨÏÀ

Korteweg-de Vries

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

untitled

橡博論表紙.PDF

untitled

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


untitled

DVIOUT-HYOU

TOP URL 1

IA

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

支持力計算法.PDF

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

sikepuri.dvi

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

b3e2003.dvi

1


( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

Z: Q: R: C: sin 6 5 ζ a, b

05Mar2001_tune.dvi


( )

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

all.dvi



7

Transcription:

RC uckling elastic uckling of initiall ent memer full-plastic ultimate elasto-plastic uckling model cover concrete initial imperfection 1 Fixed-fixed Hinged-hinged x x M M 1

3 1 a π = 1 cos x πx = a sin 1 3. M x = + M = ( + 1) + M ( M x = = + 1 ) ( x) a ( ) π a = 1 cos x ( ) π x = 1 sin 1 cr x 1 / cr 3 a 1 M = 4 1 cr a 1 cr δ ( ) = 5 v Euler s load cr π = λ EI cr πr,σ cr = E 6 A λ 1 λ = λ =.5 3.6 cr 4π EI π EI = cr = u u 1 v 1 v x

ε < ε = φ max ε σ = Eε = Eφ M = σda = Eφ da = EIφ A 7 A εmax ε ε = φ ( h ) φ = ε h 8 ε max = ε ( ε h) = f I( h) = f W M EIφ = EI 9 section modulus ield ending moment φ > φ elasto-plastic stress state 8 ε = φ ( < h ) φ = ε 1 σ = Eε ( ε ε ), σ = ± f ( ) ε > ε 11 φ > φ { } h h σd + f = d f 4 3 M = σ da = A 1 = full plastic stress state plastic section modulus M p = f h 4 f Z 13 < < M p < M < M p f (, M, V ) = σ 14 = da = m f A h M = A σ da = ± f 15 M M p f (, M ) = + 1 = 16 = σda = A d m ( θ + sinθ cosθ ) 17 3

1 M 3 cos 3 A σ da = ± d θ f 6 = 18 17 18 ψ ζ ψ M ζ f (, M ) = + 1 = 19 M p ζ1. ψ.13 M Mp M 3 =, = ± cos θ π Mp f (, M ) = + 1 = m ( θ + sinθ cosθ ) M = δ + M = M σ v M M δ v + M σ max = + = + 1 A W A W σ max = f 5 1 δ f = ep epa + A W 1 cr 3 4 {( 1+ β ) + } {( 1+ β ) + } 3 1 = ep cr cr 4 cr 1 σ {( 1+ β) σ + f } {( 1+ β) σ + f } σ f 4 ep = cr cr 4 cr 4π EI β = aa W cr = π EI β = aa W cr = β = cr < ep = cr cr > ep = M = δ v + M δ 5 6 λz δ v A 1 ( ).13 λ = λ =1 5.13 M = Mp 1 6 4

f f h f f h d W h 6 d 3 3 3 Z h 4 d 6 d f f h f f 5

load-deflection curve of initiall ent memer 5 full-plastic curve 5 a v 1 cr 4π EI π EI δ cr = cr = 5 λz δ v A 1 ( ).13 λ = λ =1 5 4 5 5 6 a a 1 ap 1 Mv = v 1 cr 1 cr 1 cr M δ + M = = ( = M ) 7.13.13.13 Z = δ ( = M) 8 ( ) v v + M = 1 Mp 1 = M p 1 A convex side c c d = 1 M M 9 6

cr ep a v u u u x a x v x v x v = cr crs ep -M relation -M v relation M p M M M p M 7

d dδ u, axial = ε dx AE 1 dδ v dδ u,def = dx dx d δ u, rot d δ u = dδ u,axial + dδ u, def d δu = dδu,axial + dδu,def + dδu, rot δ 1 dδ v σ π dδu = ε + dx δu = v dx dδ u = + δ 3 E 3 31 3 σ π u 1 a δ = + E cr.13 σ π λz u 1 δ = + E A( ) 4π EI π EI cr = cr = 31 λ = λ =1 3 σ average axial stress ε average axial strain 33 34 s σ A 33 s 1 dδ u σ s π ε s dx = + δ v dx E s 34 33 34 35 36 ε s σ s π + E a 1 σs σcr.13 σ s π Z s s 1 σ ε + E ( s ) A σ f f 4π EI π EI σ cr = σ cr = 35 A A λ = λ =1 36 σ E elasto-plastic point CRS cross point 4 E CRS η stress reduction factor η σ σ s, ep σ s, crs σ max σ s, ep η ( η 1) 37 σs, s, crs σ s, ep s, ep s, nax 8

cr ep u s f s,crs s,ep E CRS s,ep s,crs s 9

5 95 η η =1. f s a a E s Model D f s Ma mm a mm 1 16 A 19 95 fixed-fixed 5 5. 3 4 35 B 19 fixed-fixed 5 5. 6 345 C 7 19 95 hinged-hinged 8 fixed-fixed 5 5. 9 5 D 1 19 95 fixed-fixed 5 5. E 13 5. 11 75 1.5 19 95 fixed-fixed 5 14 7.5 1

a - - elasto-plastic point convex side cross point 1 elasto-plastic point cross point - elasto-plastic point cross point - 3 elasto-plastic point cross point - 4-5 - 11

oad(kn) 15 1 D D19 D16 elasto-plastic point D16 D19 D cross point D16 D19 D 5 D D19 D16 5 1 15 5 Axial Displacement(mm) 35 3 Axial Stress(Ma) 5 15 1 D D19 D16 5 elasto-plastic uckling model i-linear model.5.1.15. Axial Strain 1

oad(kn) 15 1 5 345(Ma) 95(Ma) elasto-plastic point 35(Ma) 95(Ma) 345(Ma) cross point 35(Ma) 95(Ma) 345(Ma) 35(Ma) 35 5 1 15 5 Axial Displacement(mm) 3 Axial Stress(Ma) 5 15 1 345(Ma) 95(Ma) 35(Ma) 5 elasto-plastic uckling model i-linear model.5.1.15. Axial Strain 13

oad(kn) 15 1 5 fixed-fixed fixed-fixed elasto-plastic point hinged-hinged fixed-fixed cross point hinged-hinged fixed-fixed hinged-hinged hinged-hinged 5 1 15 5 Axial Displacement(mm) 35 Axial Stress(Ma) 3 5 15 1 5 elasto-plastic uckling model i-linear model fixed-fixed hinged-hinged.5.1.15. Axial Strain 14

oad(kn) 15 1 5(mm) 5(mm) 75(mm) elasto-plastic point 5(mm) 5(mm) 75(mm) cross point 5(mm) 5(mm) 75(mm) 5 5(mm) 5(mm) 75(mm) 5 1 15 5 Axial Displacement(mm) 35 3 Axial Stress(Ma) 5 15 1 5 5(mm) 5(mm) 75(mm) elasto-plastic uckling model i-linear model.5.1.15. Axial Strain 15

.5(mm) 5.(mm) oad(kn) 15 1 5 7.5(mm) elasto-plastic point.5(mm) 5.(mm) 7.5(mm) cross point.5(mm) 5.(mm) 7.5(mm) 5 1 15 5 Axial Displacement(mm) 35 Axial Stress(Ma) 3 5 15 1.5(mm) 5.(mm) 7.5(mm) 5 elasto-plastic uckling model i-linear model.5.1.15. Axial Strain 16

- 1,,, :,, pp. 33-4, 199.5, : 7, 9,,, 1983 3 : 9, 3,,, 1983 17