CG [7] Thomaszewski [12] Baranoski [1] [2] (a) (b) (c) 3 a b c 3(a) E g 3(b) E mag 3(c) E s 3 2 [16] SPH SPH 1960 Rosenswig 4 [9] Sudo [11] Han

Similar documents
IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-CG-147 No /6/22 CG,.,,.,..,.,,. Keyframe Control of Cumulus Clouds based on Computational Fluid Dy

( ) ( ) CG Yngve [2] Yngve Feldman [3] Stam Navier-Stokes (N-S ) [5] Rasmussen 2 3 [4] 2.2 Treuille [6] Fattal N-S driving force term gathering

2010 : M DCG 3 (3DCG) 3DCG 3DCG 3DCG S

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

JFE.dvi

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

28 Horizontal angle correction using straight line detection in an equirectangular image

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

空力騒音シミュレータの開発

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

2013 M

1 3 (3DCG) [1] [2] [3] [4] [5] 3DCG [6] [7] [8] [9] ( ) 3DCG 27 NICOGRAPH [10] [6] ( ) [7] 80km 500km 1 1: 25

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

本文/目次(裏白)

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

55_1-4_特集4部_2-2.qxd

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Vol.011-CG-143 No.6 011/6/7 ことで目的の映像を作成しており, 極めて煩雑な作業が必要となっている. このような背景から, 本論文では, 上記の問題を解決するための方法として, あらかじめ流体シミュレーションにより生成した複数のシミュレーション結果を組み合わせることにより,

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

第5章 偏微分方程式の境界値問題

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

液晶の物理1:連続体理論(弾性,粘性)

Web Web Web Web Web, i

EGunGPU

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-CG-157 No.22 Vol.2014-CVIM-194 No /11/21 3 次元流体映像の変形と補間 谷翼 1 土橋宜典 1,2 佐藤周平 3 山本強 1 近年, コンピュータグラフィ

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Untitled

,,.,.,,.,.,.,.,,.,..,,,, i

新しい価値創出に貢献する大規模CAEシミュレーション

Vol.2.indb


Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT MOP

14 2 5

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

T07M cm 3 cm/sec FreeFEM++ FreeFEM++

プログラム

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus


(ANAGISAWA Daichi) (NISHINARI Katsuhiro) 1 1 Helbing Social Force Model [1] Social Force Social Force [2][3] [3] 1

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

GPGPU

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

揃 Lag [hour] Lag [day] 35

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

パーキンソン病治療ガイドライン2002

研修コーナー

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

日立金属技報 Vol.34

抄録/抄録1    (1)V

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

xia2.dvi

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

D:/cssj/jcs/v7n2/a5tex/TX2.dvi

FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Vol.11-HCI-15 No. 11//1 Xangle 5 Xangle 7. 5 Ubi-WA Finger-Mount 9 Digitrack 11 1 Fig. 1 Pointing operations with our method Xangle Xa

Microsoft Word - deim2011_new-ichinose doc

58 10

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

Classic HD:ŠŸŠp”Ò:Discovery:‘‚ŠÞ:‚²„¤:Ÿ_Ł¶:Simulation_for_HRO.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1: DTS r 1, r 2 v ρ(x) = π(r1 2 r2) 2 dr dt 1 v x (2) t=x/v DTS [2] wt% KCl %/ 2 3 5wt% NaCl 3wt% ( ) 2 45 NaCl 300Hz 4-1.3%/ [2]

39-3/2.論説:藤井・戸前・山本・井上


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Transcription:

1 Yonghao Yue 1 2 3 1 SPH smoothed particle hydrodynamics Visual Simulation of the Magnetic Fluid to Represent the Spike Phenomenon Tomokazu Ishikawa, 1 Yonghao Yue, 1 Kei Iwasaki, 2 Yoshinori Dobashi 3 and Tomoyuki Nishita 1 In this paper, we focus on magnetic fluids. Magnetic fluids behave as both fluids and as magnetic bodies, and these characteristics allow them to generate spike-like shapes along a magnetic field. Magnetic fluids are popular materials for use in works of art. Our goal is to simulate such works of art. It is known, however, that the spikes are difficult to simulate using fully physical-based methods. Therefore, we propose a visually plausible method that combines a procedural approach together with the SPH (smoothed particle hydrodynamics) method. We demonstrate that the spike shapes can be simulated when a magnetic force is applied. 1. CG CG, Navier-Stokes,.,,,,. CG 1 NASA 1960 2 1 The University of Tokyo 2 Wakayama University 3 Hokkaido University 1 c 2011 Information Processing Society of Japan

2. 1 2 CG [7] Thomaszewski [12] Baranoski [1] [2] (a) (b) (c) 3 a b c 3(a) E g 3(b) E mag 3(c) E s 3 2 [16] SPH SPH 1960 Rosenswig 4 [9] Sudo [11] Han [6] MPS Moving Particle Semi-implicit FEM Finite Element Method 10 25 [13] 3. SPH 2 c 2011 Information Processing Society of Japan

3.1 Navier-Stokes m u = 0 (1) u t = (u )u 1 ρ p + ν 2 u + F (2) (1) (2) u t ρ p ν F Navier-Stokes SPH i x i F sur(x i) [8] F sur (x i ) = k j A i x ij x ij 2 (3) k A i i x ij = x j x i x ij = x j x i 3.2 SPH N S N S m = q m d (4) q m d p N p S d = p N p S x H dipole (x) H dipole (x) = 1 4πµ m x x 3 (5) µ x = x j H x j H(x j ) = H dipole (x j ) V 4πµ N i=1 i j χh(xi) xij V SPH x i i SPH N SPH (6) SPH χh(xi) xij χh(x i ) = χh(x i) χh(x i) ( x ij x ( x ij y ( x ij z ) + x ij ) + x ij ) + x ij H(x i) (χh(x x i)) (χh(xi)) y (χh(xi)) z (6) (7) 3 c 2011 Information Processing Society of Japan

(χh(x i )) = N j=1 j i m j ρ j χh(x j ) w(x ij ) (8) w(x ij ) { 315 (h 2 r 2 ) 3 0 r h 64πh w(r) = 9 0 h < r, (9) r h SPH SPH SPH 4 (6) RMSE SPH F mag(x i) F mag (x i ) = µ H(x i) 2 ϕ i = µ H(x i) 2 2 ϕ i 3.3 j 2 (10) (11) ϕ j ϕ i = m j w(x ij ) (12) ρ j 4 (6) [9] SPH z(x, y) [15] z(x, y) = (k 1,k 2 ) Ω C 0 (sin k 1 x + C 1 cos k 1 x)(sin k 2 y + C 2 cos k 2 y) (13) C 0 C 1 C 2 Ω k 2 1+k 2 2=k 2 x y xy 5 (13) z(x, y) = C 0(cos k 2 ( 3x + y) + cos k 2 ( 3x y) + cos ky) (14) (14) 6 4 c 2011 Information Processing Society of Japan

5 6 (14) 9 SPH (14) M c M c [15] 7 (14) 8 M 2 c = 2 µ (1 + 1 γ ) (ρ 1 ρ 2)gα, (16) (14) ( 5) [9] 7 (14) 7 l c 8 C 0 C 0 ρ 1 ρ 2 α x y x y x y 9 (14) 4. C 0 = βh(x) (15) β H(x) x Yu [14] SPH 5 c 2011 Information Processing Society of Japan

10 (a) (a) SPH (b) 1 dt time step 0.00075 ν 0.12 m 0.016 R 0.5 h 1.3 g 9.8 k 7.5 q m 5.0 µ 4 π 10 7 χ 0.01 (b) 11 11 12 6. POV-Ray 5. SPH CUDA 11 12 40,960 Intel(R) Core(TM)2 Duo 3.33GHz CPU 3.25GB GPU NVIDIA GeForce GTX 480 PC 1 6 1 1 2 10(a) 10(b) (13). 1) G.V.G. Baranoski, J.G. Rokne, P.Shirley, T.S. Trondsen, and R.Bastos. Simulation the aurora. Visualization and Computer Animation, 14(1):43 59, 2003. 6 c 2011 Information Processing Society of Japan

情報処理学会研究報告 (a) t = 0.0 sec (b) t = 1.6 sec 図 11 (a) t = 5.2 sec (c) t = 3.2 sec (d) t = 4.8 sec 磁性流体のスパイクの形成 スパイク形状は磁性流体の下部に磁石を近づけていくと成長する (b) t = 6.8 sec (c) t = 8.4 sec (d) t = 10.0 sec 図 12 磁場を除いた場合の磁性流体の動き 2) G.V.G. Baranoski, J.Wan, J.G. Rokne, and I.Bell. Simulating the dynamics of auroral phenomena. ACM Transactions on Graphics (TOG), 24(1):37 59, 2005. 5) T. G. Goktekin, A. W. Bargteil, and J. F. O Brien. A method for animating viscoelastic fluids. In Proceedings of SIGGRAPH 2004, pages 463 468, 2004. 3) M.D. Cowley and R.E. Rosensweig. The interfacial stability of a ferromagnetic fluid. Journal of Fluid Mechanics, 30(4):671 688, 1967. 6) K.Han, Y.T. Feng, and D.R.J. Owen. Three-dimensional modelling and simulation of magnetorheological fluids. International Journal for Numerical Methods in Engineering, 84(11):1273 1302, 2010. 4) R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In Eugene Fiume, editor, Proceedings of SIGGRAPH 2001, pages 15 22, 2001. 7) T.Ishikawa, Y.Yue, Y. Dobashi, and T. Nishita. Visual simulation of solar photosphere based on magnetohydrodynamics. In Proceedings of IEVC 2010. IIEEJ, 7 c 2011 Information Processing Society of Japan

2010. 8) K.Iwasaki, H.Uchida, Y.Dobashi, and T.Nishita. Fast particle-based visual simulation of ice melting. Computer Graphics Forum (Pacific Graphics 2010), 29(7):2215 2223, 2010. 9) R.E. Rosensweig. Magnetic fluids. Annual Review of Fluid Mechanics, 19:437 461, 1987. 10) J.Stam. Stable fluids. In Proceedings of SIGGRAPH 1999, pages 121 128, 1999. 11) S.Sudo, H.Hashimoto, A.Ikeda, and K.Katagiri. Some studies of magnetic liquid sloshing. Journal of Magnetism and Magnetic Materials, 65(2):219 222, 1987. 12) B.Thomaszewski, A.Gumann, S.Pabst, and W.Strasser. Magnets in motion. In Proceedings of SIGGRAPH Asia 2008, pages 162:1 162:9, 2008. 13) G.Yoshikawa, K.Hirata, F.Miyasaka, and Y.Okaue. Numerical analysis of transitional behavior of ferrofluid employing mps method and fem. IEEE Transactions on Magnetics, 47(5):1370 1373, 2011. 14) J.Yu and G.Turk. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 217 225, 2010. 15). 23., 1989. 16).., 1988. 8 c 2011 Information Processing Society of Japan