(bundle adjustment) 8),9) ),6),7) GPS 8),9) GPS GPS 8) GPS GPS GPS GPS Anai 9) GPS GPS GPS GPS GPS GPS GPS Maier ) GPS GPS Anai 9) GPS GPS M GPS M inf

Similar documents
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

VRSJ-SIG-MR_okada_79dce8c8.pdf

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

(MIRU2007) GPS, GPS GPS structure-from-

Fig Measurement data combination. 2 Fig. 2. Ray vector. Fig (12) 1 2 R 1 r t 1 3 p 1,i i 2 3 Fig.2 R 2 t 2 p 2,i [u, v] T (1)(2) r R 1 R 2

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

28 Horizontal angle correction using straight line detection in an equirectangular image

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

28 TCG SURF Card recognition using SURF in TCG play video

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

塗装深み感の要因解析

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

SICE東北支部研究集会資料(2012年)

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

,,.,.,,.,.,.,.,,.,..,,,, i

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

HP cafe HP of A A B of C C Map on N th Floor coupon A cafe coupon B Poster A Poster A Poster B Poster B Case 1 Show HP of each company on a user scree

25 Removal of the fricative sounds that occur in the electronic stethoscope

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

Fig. 1. Example of characters superimposed on delivery slip.

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

鉄鋼協会プレゼン

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

光学

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

RTM RTM Risk terrain terrain RTM RTM 48

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

揃 Lag [hour] Lag [day] 35

dsample.dvi

*1 1 1 Augmented Telepresence Using Recorded Aerial Omnidirectional Videos Captured from Unmanned Airship Fumio Okura *1, Masayuki Kanbara 1 and Naoka

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

24 Depth scaling of binocular stereopsis by observer s own movements

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-MBL-80 No.11 Vol.2016-CDS-17 No /8/ (VR) (AR) VR, AR VR, AR Study of a Feedback Method fo

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

AR. AR AR Lenti- Mark[3] 1 LentiMark AR ARToolKitPlus 1 3 ArraMark ArraMark 5). ID ArraMark 9 1 Lens area Reference points () ArraMark prototpe

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

Vol. 42 No. SIG 8(TOD 10) July HTML 100 Development of Authoring and Delivery System for Synchronized Contents and Experiment on High Spe

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

4.1 % 7.5 %

Worm Hole View 2 ( ) ( ) Evaluation of a Presentation Method of Multilevel Urban Structures using Panorama Views Yohei Abe, Ismail Arai and Nobuhiko N

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

) 1 2 2[m] % H W T (x, y) I D(x, y) d d = 1 [T (p, q) I D(x + p, y + q)] HW 2 (1) p q t 3 (X t,y t,z t) x t [ ] T x t

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

Fig. 1 Hammer Two video cameras Object Overview of hammering test (14) (8) T s T s 2

本文6(599) (Page 601)

NAIST-IS-MT

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

( )

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

kiyo5_1-masuzawa.indd

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ

22_05.dvi

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

proc.dvi

Transcription:

GPS GPS solve this problem, we propose ()novel model about GPS positioning which enables more robust estimation with extended bundle adjustment, and ()outlier removal for GPS positioning using video information. Concretely, we have employed a simple assumption that true GPS position exists within a certain range from the observed GPS position and the size of the range depends on the GPS positioning confidence. The proposed method estimates camera parameters by minimizing an energy function that is defined by using the reprojection error and the penalty term for GPS positioning. Additionally, outliers are removed by checking the consistency between vision and GPS information. GPS GPS GPS GPS ( ) () GPS () GPS GPS GPS GPS GPS GPS GPS Extrinsic Camera Parameter Estimation Using Video Images and GPS Considering GPS Positioning Confidence and Outlier Hideyuki Kume, Takafumi Taketomi, Tomokazu Sato and Naokazu Yokoya This report proposes a method for estimating extrinsic camera parameters using video images and temporally sparse position data acquired by GPS. In conventional methods, the accuracy of estimated camera position largely depends on the confidence of GPS positioning data because they implicitly assume that GPS position error is very small or normally distributed. In order to. ) Structure from Motion ) Visual SLAM 3) GPS ),4) 9) 4),5) 4) 5) GPS ),6) 9) GPS GPS GPS ),6),7) Graduate School of Information Science, Nara Institute of Science and Technology c Information Processing Society of Japan

(bundle adjustment) 8),9) ),6),7) GPS 8),9) GPS GPS 8) GPS GPS GPS GPS Anai 9) GPS GPS GPS GPS GPS GPS GPS Maier ) GPS GPS Anai 9) GPS GPS M GPS M influence function GPS 8),9) GPS GPS GPS GPS GPS (RTK-fix RTK-float ) GPS GPS GPS GPS 3 4. GPS GPS GPS GPS GPS GPS GPS 8),9) GPS (A) (B) 4) ( f ) GPS (GPS G f ) GPS GPS (C) (A) (C) (D) GPS (C) (D) c Information Processing Society of Japan

Fig. (A) 特徴点の追跡によるカメラ位置 姿勢の推定 (B) 特徴点の三次元位置の推定, 追加 削除 f G Y N (C)GPS 測位の外れ値を考慮した GPS 測位値を用いた狭区間最適化 (C-)GPS 測位値を用いた狭区間最適化 (C-3)GPS 測位の外れ値の判定, 除外 外れ値か N f 回目の繰り返し (C-) 再投影誤差の平均, 標準偏差の計算 Y (D)GPS 測位値を用いた全体最適化 Flow diagram of the proposed method.. GPS GPS E i Φ i GPS Ψ i E = Φ i + Ψ i () i F i G F G GPS Φ i GPS Ψ i.. Φ i Φ i = µ j(q ij ˆq ij) () P i j P i P i i q ij i j ˆq ij j µ j j j (w m) w 4) µ j = s j = m + ( w i=w m (q ij ˆq ij ) ) s j j.. GPS 8),9) GPS GPS 8) ˆΨ i = ω(m i g i d) (4) 9) ˆΨ i = ω τ (Migi d) (5) M i i GPS d GPS g i i GPS GPS ω Φ i τ GPS GPS RMS GPS GPS GPS GPS GPS (RTK-fix RTK-float ) GPS GPS GPS Ψ i (3) 3 c Information Processing Society of Japan

x i y i z i Ψ i = GPS 測地座標系 z ( 鉛直上 ) ( 東 ) y x GPS 測地座標系におけるGPS 測位位置 : g i ( 南 ) h( p) r( p) M i カメラ座標系 カメラ座標系におけるGPS 受信機の位置 : GPS 受信機の推定位置 M d i g i GPS 測位位置 GPS Fig. Penalty for GPS positioning. ( ) n ( ) n x r(p) i + yi + h(p) z i (6) = M i d g i (7) M i i GPS r h / p GPS n n GPS Ψ i Ψ i 8),9) Φ i Ψ i GPS GPS (DGPS RTK- GPS) RTK-GPS (RTK-fix RTK-float) DOP GPS RTK-GPS (RTK-fix RTK-float) d p p r(p), h(p) GPS. GPS GPS.. GPS GPS (C) (D) (A) (B) (A) (B) ( ) ( ) (D) (C) (f l) ( f ) () E GPS (D) (A) (C) E.. GPS GPS GPS (C) ( f ) GPS GPS Φ f GPS GPS GPS GPS Φ f, σ f (C-) 4 c Information Processing Society of Japan

Φ f = Φ i (8) G f i G f σ f = (Φ i G f Φ f ) (9) i G f G f = {i G f l i < f} () G f f GPS (C-) (C-3) Φ f > Φ f + σ f () G f Anai 9) GPS M 3. RTK-GPS GPS.. 3. GPS GPS (6) p r(p), h(p) GPS p RTK-GPS (RTK-fix RTK-float) 3.. RTK-GPS (TOPCON GR-3 ±mm, ±5mm) 5 GPS Hz RTK-GPS RTK.8.4 -.4 -.8 -.8 -.4.4.8 Fig. 3 (a) RTK-fix 5-5 - - -5 5 (b) RTK-float 3 GPS Distribution of GPS positions in the fixed-point observation 3.. GPS RTK-fix GPS RTK-GPS 3 (a) (b) 5% 3 GPS GPS.. (b) r(p) h(p) GPS r(p), h(p) [mm] Table Maximum errors for each solution type [mm]. (a) (b) RTK-fix 793 677 9 4 RTK-float 79 44 3778 954 5 c Information Processing Society of Japan

.5.5 -.5 - -.5 -.5 - -.5.5.5 (a) -.5.5 -.5 - -.5 -.5 - -.5.5.5 (b) - 4 RTK-float Fig. 4 Trace of the moving average in RTK-float () GPS GPS.5 (b).5 37mm 5mm 3..3 GPS GPS 4 RTK-float 3 GPS 3 m 3. GPS 3.. (Sony VCL-HG758) (Sony DSR- 5fps 4 km.5 37mm 5 cm.5 5mm PD-5) 7m ( 7 48 5 fps ) RTK-GPS (TOPCON GR-3) GPS GPS RTK-fix GPS (TOPCON Tools) GPS RTK-float GPS GPS d GPS (4) (5) GPS ω = 8 (6) n = 7, l = 5 3.. GPS A: GPS B: GPS GPS 8) C: GPS GPS 9) D: ( ) E: ( ) B,C A GPS 3 B C 3..3 GPS GPS 5 6 6 c Information Processing Society of Japan

4 8 6 4 3 4 5 6 7 (a) 4 5 5 3 35 4 (b) A 5 GPS ( ) Fig. 5 Estimated GPS positions (horizontal). 36 5 6 f f Φ f () Φ f + σ f 7 GPS 8 8 A C A 5 6 B RTK-float B GPS GPS 8 6 4-4 6 8 6 4 8 6 4 6 GPS ( ) Fig. 6 Estimated GPS positions (altitude). 4 6 8 Fig. 7 7 Reprojection errors for each frame. C ( E) GPS B RTK-float RTK-float RTK-fix C RTK-float RTK-float 4 RTK-float 5% t 7 c Information Processing Society of Japan

9 8 7 6 5 4 3 4 6 8 8 Fig. 8 Position errors for each frame. Table [mm] Comparison of position errors [mm]. A 9.6 95.8 336. B 464. 59.5 58.3 C 334.9.6 574.5 E 73.3 89.7 63.4 C 4. GPS GPS GPS GPS GPS GPS GPS GPS GPS GPS ( (A) No.96) (SCOPE) ) Pollefeys, M., Nistér, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S., Merrell, P. et al.: Detailed real-time urban 3D reconstruction from video, Int. J. of Computer Vision, Vol.78, No.-3, pp.43 67 (8). ) Pollefeys, M., VanGool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J. and Koch, R.: Visual Modeling with a Hand-Held Camera, Int. J. of Computer Vision, Vol.59, No.3, pp.7 3 (4). 3) Klein, G. and Murray, D.: Parallel Tracking and Mapping for Small AR Workspaces, Proc. Int. Symp. on Mixed and Augmented Reality, pp.5 34 (7). 4) (D-II) Vol.J86-D-II, No., pp.43 44 (3). 5) Bleser, G., Wuest, H. and Stricker, D.: Online camera pose estimation in partially known and dynamic scenes, Proc. Int. Symp. on Mixed and Augmented Reality, pp. 56 65 (6). 6) Agrawal, M. and Konolige, K.: Real-time localization in outdoor environments using stereo vision and inexpensive GPS, Proc. Int. Conf. on Pattern Recognition, Vol.3, pp.63 68 (6). 7) Schleicher, D., Bergasa, L. M., Ocana, M., Barea, R. and Lopez, E.: Real-time hierarchical GPS aided visual SLAM on urban environments, Proc. Int. Conf. on Robotics and Automation, pp.438 4386 (9). 8) GPS : Vol.47, No.SIG5(CVIM3), pp.69 79 (6). 9) Anai, T., Fukaya, N., Sato, T., Yokoya, N. and Kochi, N.: Exterior orientation method for video image sequences with considering RTK-GPS accuracy, Proc. Int. Conf. on Optical 3-D Measurement Techniques, Vol.I, pp.3 4 (9). ) Maier, D. and Kleiner, A.: Improved GPS Sensor Model for Mobile Robots in Urban Terrain, Proc. Int. Conf. on Robotics and Automation, pp.4385 439 (). 8 c Information Processing Society of Japan