xxxx/xx Vol. Jxx A No. xx DCF DCF [9], [10] [5] DSR [2] [5], [6] DCF DCF DCF [5] [7] DCF [9] [11] DCF IEEE DCF DCF [5] DSR DCF DCF 2. IEEE 802.

Similar documents
TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

外国語学部_紀要34号(横書)/11_若山

WMN Wi-Fi MBCR i

18 LAN AP (AP, Access Point) LAN (STA, Station) (RSSI, Received Signal Strength Indicator) AP AP STA AP LAN AP STA LAN AP LAN LAN STA AP LAN (Local Ar


修士論文


DTN DTN DTN DTN i

出岡雅也 旭健作 鈴木秀和 渡邊晃 名城大学理工学部

IEEE e

Vol.58 No (Mar. 2017) LAN MAC 1,a) , IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

58 10

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

求人面接資料PPT

wide97.dvi

1

main.dvi

デジタル通信を支える無線技術

APR. JUL. AUG. MAY JUN. 2

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

1 I/F I/F 1 6) MobileIP 7) 8) MN: Monile Node MN AR Mobility Anchor Point(MAP) MobileIP HMIP HMIP HA-MAP MN MAP MN MAP HMIP MAP MN 2 MobileIP Mo

電子マネーと通信産業の戦略

_2009MAR.ren

AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt

problem. In this paper, we pay attention to the directivity control, implement DMAC which is a typical MAC protocol, and evaluate it under the

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

1489 TESLA 9) ARIANDE 10) DoS SEAD 11) CONFIDANT 12) TRUST-BASED ROUTING 13) AODV-REX 14) Watchdog Parther 15) CONFIDANT ALARM CONFIDANT ALARM TRUST-B

1 RTS/CTS 1 Fig. 1 One example of the issue in RTS/CTS LAN CSMA/CA IEEE [11] [12] [13] [14] (SBT: Strong Busy Tone) [9] [10] SBT RTS/CTS

3_39.dvi

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

初めに:

i

極地研 no174.indd


Microsoft Word - AN.doc

公益社団法人日本都市計画学会都市計画論文集 Vol.53 No 年 10 月 Journal of the City Planning Institute of Japan, Vol.53 No.3, October, 2018 A queueing model for goods d

28 Horizontal angle correction using straight line detection in an equirectangular image

Technology Trends and Applications of IoT System Susumu MATSUI 1991 M. Weiser Ubiquitous Computing 25 Pervasive Computing Ambient Intelligence IoT (In

untitled

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Table 1 Table 2

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat

TCP T ransmission Control Protocol TCP TCP TCP TCP TCP TCP TCP TCP c /(18)

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D

075730G: 2008/7/4, /07/ A: J: E:

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

橡MPLS-Japan-shared-fastreroute.PDF


21 Key Exchange method for portable terminal with direct input by user

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

contents

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

鉄鋼協会プレゼン

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

7,, i

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

Computer Security Symposium October 2013 Android OS kub

本文

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

2007-Kanai-paper.dvi

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Run-Based Trieから構成される 決定木の枝刈り法

17 LAN Access Point (the Internet) LAN(Local Area Network) LAN LAN LAN LAN (AP Access Point) IEEE 82.11b/g ( ) AP AP IEEE 82.11a/b/g (STA Station) AP

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

WLAN WLAN AP WLAN WLAN WLAN AP- WLAN SINR WLAN WLAN CE WLAN WLAN WLAN CE 2 3 WLAN 4 WLAN 2. WLAN [10] AP CE [11] AP CE CE [12] CE AP AP AP WLAN WLAN A

SICE東北支部研究集会資料(2012年)

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

スライド 1

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

完成卒論.PDF

2 1. LAN LAN Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved LAN LAN WLAN

,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN

4 i

ITAOI2003第三屆離島資訊與應用研討會論文範例

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Vol. 41 No Fig. 1 SCS Data transmission network on SCS. HDTV H.261 RGB NTSC VSAT VSAT VSAT 1 HUB VSAT 8) 9) FECForward Error Correction HUB

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

paper.dvi

JFE.dvi

untitled

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

24 Depth scaling of binocular stereopsis by observer s own movements

橡 PDF

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

資料1-3

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

3_23.dvi

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

untitled

Transcription:

LAN An Analysis on Influence of Control Messages of Ad Hoc Routing Protocols upon Link Trougput in 802.11 Wireless LAN Ryoji ONO, Tatsuji MUNAKA, and Takasi WATANABE DSR MAC IEEE 802.11 DCF DCF LAN DCF DCF DSR 0.003 [1/m 2 ] DSR DCF DSR IEEE 802.11 DCF 1. Information Tecnology R & D Center, Mitsubisi Electric Corporation, 5 1 1 Ofuna, Kamakura, Kanagawa, 247 8501 Japan Faculty of Informatics, Sizuoka University, 3 5 1 Jooku, Hamamatsu, Sizuoka, 432 8011 Japan [4] IEEE 802.11 LAN [1] [5], [6], [8] 802.11 MAC DCF Distributed Coordination Function PCF Point Coordination Function 2 PCF DCF DCF CSMA/CA Carrier Sense Multiple Access wit Collision Avoidance A Vol. Jxx A No. xx pp. 1 10 xxxx xx 1

xxxx/xx Vol. Jxx A No. xx DCF DCF [9], [10] [5] DSR [2] [5], [6] DCF DCF DCF [5] [7] DCF [9] [11] DCF IEEE 802.11 DCF DCF [5] DSR DCF DCF 2. IEEE 802.11 DCF DSR 3. 2. DSR 4. 5. 6. 2. 2. 1 IEEE 802.11 DCF IEEE 802.11 [1] MAC 2 DCF PCF DCF DCF CSMA/CA RTS/CTS request-to-send/clear-to-send 2 RTS/CTS DIFS DCF inter-frame space RTS/CTS SIFS sort inter-frame space ACK RTS/CTS DIFS RTS RTS SIFS CTS RTS SIFS RTS/CTS [9] 2. 2 IEEE 802.11 DCF IEEE 802.11 DCF Cen [10] g M T p 2

LAN normalized trougput S 0.4 0.3 0.2 0.1 single op multi op 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 packet arrival rate g [pkt/slot] 1 DCF M = 10, T p = 32 Fig. 1 Trougput of DCF (M = 10, T p = 32) M 1 Cen [10] M = 10 T p = 32 [bytes] 1 g S M 1 2. 3 DSR DSR [2] DSR RREQ RREQ RREQ 1 [11] RREQ RREP RREQ RREQ RREQ RREP Caced RREP RERR RERR RREQ Broc [5] DSR 4 [6], [7] DSR 3. Cen [10] DSR Li [14] µ DSR p d [8] DSR g r p d µ v p d N ρ g r v ρ g a g Cen 3

xxxx/xx Vol. Jxx A No. xx [10] g DCF S v ρ DSR g r S 3. 1 [12], [13] 2 Li [14] 2 [15] µ r ū µ = 2ū πr (1) v 2 u θ v u = v 2 2v cos θ = 2v sin θ 2 (2) ū u θ ū = π 0 {2v sin(θ/2) 2π sin θ} dθ π 0 2π sin θ dθ = 4 3 v (3) µ = 8v 3πr 3. 2 (4) p d DSR 2 [15] 1 n l p d µ p d = n l µ (5) 2 p d N/2 N p d = N 2 p d = N 2 n lµ = 4N n lv 3πr 3. 3 (6) g r DSR RREQ RREP RERR g r DCF RREQ RREP RERR 3 p req p rep p err G r [8] G r = p req Nδ req + p rep n rep + p err n (7) N n n rep RREP δ req Caced RREP RREQ n r RERR 1 n r p err p d n r RREQ RERR p req p err RREQ 1 RREP δ rep p rep δ rep p req 2 DSR 3 4

LAN G r = (Nδ req + δ rep n rep + n ) n r p d (8) G r g r αg r = Ng r (9) [10] ρ A N = ρa g r g r = α N G r = α N (Nδ req + δ rep n rep + n ) n r p d 4α(ρAδreq + δrep nrep + n ) n l n rv = (10) 3πr Caced RREP δ req 1 δ rep 1 ρa = N n > n rep ρaδ req + n ) g r (δ rep n rep g r 4αA n l n r ρv (11) 3πr g r ρ v 3. 4 2. 2 g g g a g r g = g a + g r (12) g a g Cen [10] DCF S 4. 3. DSR DCF LAN 10 g r v ρ 2 S 4. 1 [8], [10], [11] 1 A 25 [m] T p Cen [10] T p [6] RREP RTS/CTS RTS/CTS [10] RTS/CTS DSR RREQ RTS/CTS Cen [10] RTS/CTS 4. 2 Caced RREP Caced RREP 1 Table 1 Parameters r 25 m A (100 100) m 2 n 3 n l 3 n r 2 1 Mbps α 20 µsec γ 2 µsec T p (26 + 4 n ) bytes PHY 24 bytes MAC 28 bytes RTS 44 bytes CTS 38 bytes ACK 38 bytes SIFS 10 µsec DIFS 50 µsec CW min 31 CW max 1023 m 5 5

xxxx/xx Vol. Jxx A No. xx trougput against offered load S/G 1 0.1 0.01 g a = 0.0002 g a = 0.0005 g a = 0.0010 g a = 0.0020 trougput against offered load S/G 1 0.1 0.01 g a = 0.0002 g a = 0.0005 g a = 0.0010 g a = 0.0020 0.1 1 10 node speed v [m/sec] 0.001 0.01 node density ρ [1/m 2 ] 2 Fig. 2 Trougput against node speed 3 Fig. 3 Trougput against node density (1) 4. 2. 1 Caced RREP Caced RREP δ req 1 δ rep 1 11 a ) v 2 S S G S/G G 9 g M = ρπr 2 α G = M α g = ρπr2 α g (13) 2 ρ 5.0 10 3 [1/m 2 ] 4 g a 0.0002 0.002 5 2 g a > = 0.001 v S/G 1 g > 0.001 4 8 m 1 5 200 2000 [pkt/sec] 140 1400 [kbps] g a < = 0.0005 v < = 1 S/G 1 v > 1 S/G v > 4 g a g r b ) ρ S/G 3 v = 1 [m/sec] g a 0.0002 0.002 ρ g a g a ρ S/G 3 4 4 3 4 g a = 0.001 6

LAN trougput against application trougput 1 0.9 0.8 0.7 0.6 g a = 0.0002 g a = 0.0005 g a = 0.0010 g a = 0.0020 0.001 0.01 node density ρ [1/m 2 ] 4 Fig. 4 Trougput against node density (2) ρ 4 ρ = 0.003 ρ = 0.005 c ) ρ 0.002 0.02 v S/G 5 g a 0.0002 2 3 4 5 g a g r ρ < = 0.003 v < = 10 v = 10 36km ρ v ρ > = 0.010 v < = 1 v = 1 3.6km ρ v ρ = 0.003 0.010 v trougput against offered load S/G 1 0.1 0.01 0.1 1 10 node speed v [m/sec] ρ = 0.002 ρ = 0.003 ρ = 0.004 ρ = 0.006 ρ = 0.010 ρ = 0.014 ρ = 0.020 5 Fig. 5 Trougput against node speed and density ρ > = 0.010 v ρ = 0.003 0.010 v 4. 2. 2 Caced RREP Caced RREP δ req 1 δ rep 1 10 δ req δ rep n rep 2 DSR Caced RREP [17] ρ 0.002 0.02 v S/G 6 ρ < = 0.003 v < = 10 ρ > = 0.010 v < = 1 2 2 Table 2 Parameters (2) δ req 0.267 δ rep 10.4 n rep 2.10 7

xxxx/xx Vol. Jxx A No. xx trougput against offered load S/G 1 0.1 0.01 0.1 1 10 node speed v [m/sec] ρ = 0.002 ρ = 0.003 ρ = 0.004 ρ = 0.006 ρ = 0.010 ρ = 0.014 ρ = 0.020 6 Fig. 6 Trougput against node speed and density ρ = 0.003 0.010v Caced RREP ρ > = 0.010 v ρ = 0.003 0.010 v 4. 3 A r ρ > = 0.010 [1/m 2 ] ρ = 0.003 0.010 [1/m 2 ] v = 1 10 [m/sec] DSR DCF MAC DSR ρ < = 0.003 6 6 10 m 1 100 100 m 2 30 5. a ) [5], [6] b ) RTS/CTS [6] RTS/CTS c ) DSR AODV [3] DSR [5], [6] d ) e ) DSR 6. IEEE 802.11 DCF DSR [14] [8] DSR DCF [10] 0.003 [1/m 2 ] 8

LAN DSR DCF DSR [1] IEEE standard for wireless LAN medium access control (MAC) and pysical layer (PHY) specification, ISO/IEC 8802-11:1999, Aug. 1999. [2] D. Jonson, D. Maltz, and Y. Hu, Te dynamic source routing protocol for mobile ad oc networks, draft-ietf-manet-dsr-10.txt, Jul. 2004. [3] C. Perkins, E. Belding-Royer, and S. Das, Ad oc on-demand distance vector (AODV) routing, RFC 3561, Jul. 2003. [4] IEEE standard for wireless LAN medium access control (MAC) and pysical layer (PHY) specification: ESS mes, ttp://grouper.ieee.org/groups/802/11 /Reports/tgs update.tm. [5] J. Broc, D. Maltz, D. Jonson, Y. Hu, and J. Jetceva, A performance comparison of multi-hop wireless ad oc network routing protocols, Proc. ACM/IEEE MobiCom 98, pp.85 97, Dallas, USA, Oct. 1998. [6] C. Perkins, E. Royer, S. Das, and M. Marina, Performance comparison of two on-demand routing protocols for ad oc networks, IEEE Personal Communications, vol.8, no.1, pp.16 28, Feb. 2001. [7] T. Kullberg, Performance of te ad-oc on-demand distance vector routing protocol, Helsinki University of Tecnology Seminar on Internetworking, HUT T- 110.551, Espoo, Finland, Apr. 2004. [8] vol.45 no.12 pp.2566 2578 Dec. 2004. [9] S. Kurana, A. Kaol, S. Gupta, and A. Jayasumana, Performance evaluation of distributed co-ordination function for IEEE 802.11 wireless LAN protocol in presence of mobile and idden terminals, Proc. IEEE MASCOTS 99, pp.40 47, College Park, USA, Oct. 1999. [10] Y. Cen, Q. Zeng, and D. Agrawal, Performance of MAC protocol in ad oc networks, Proc. CNDS 03, pp.55 61, Orlando, USA, Jan. 2003. [11] J. Yin, Q. Zeng, and D. Agrawal, Performance evaluation of 802.11 distributed coordination function in ideal and error-prone cannel, Proc. CNDS 04, pp.55 61, San Diego, USA, Jan. 2004. [12] J. Tsumoci, K. Masayama, H. Ueara, and M. Yokoyama, Impact of mobility metric on routing protocols for mobile ad oc networks, Proc. IEEE PACRIM 03, pp.322 325, Victoria, Canada, Aug. 2003. [13] X. Perz-Costa, C. Bettstetter, and H. Hartenstein, Toward a mobility metric for comparable and reproducible results in ad oc networks researc, ACM Mobile Computing and Communications Review, vol.7, no.4, pp.58 60, Oct. 2003. [14] X. Li, and Q-A. Zeng, Modeling and analysis of multi-op wireless and mobile ad oc networks using te IEEE 802.11 DCF protocols, Proc. ICWN 04, pp.539 545, Las Vegas, USA, Jun. 2004. [15] Q-A. Zeng, and D. Agrawal, Modeling and efficient andling of andoffs in integrated wireless mobile networks, IEEE Trans. Veicular Tecnology, vol.51, no.6, pp.1469 1478, Nov. 2002. [16] LAN MBL vol.2005 no.28 pp.117 124 Mar. 2005. [17] D. Maltz, J. Broc, J. Jetceva and D. Jonson, Te Effects of On-Demand Beavior in Routing Protocols for Multi-Hop Wireless Ad Hoc Networks, IEEE J. Selected Areas on Communications, vol.17, no.8, pp.1439 1453, Aug. 1999. 1. req rep n rep δ req δ rep n rep [17] [17] VII VIII Caced RREP RREQ RREP Caced RREP RREQ OgReq N F wreq N RREP OgRep N F wrep N Caced RREP OgReq C F wreq C OgRep C F wrep C 1 RREQ RREQ RREQ Caced RREP RtReq N RtReq C RtReq N RtReq C = OgReqN +F wreq N OgReq N = OgReqC +F wreq C OgReq C (A 1) (A 2) δ req Caced RREP Caced RREP RREQ 9

xxxx/xx Vol. Jxx A No. xx δ req = RtReqC RtReq N = (OgReqC +F wreq C ) OgReq N (OgReq N +F wreq N ) OgReq C (A 3) [17] VII VIII δ req = (776 + 8812) 871 0.267 (A 4) (871 + 39471) 776 δ rep RREQ RREP 1982 1984 1987 1990 1994 2005 802.11 IEEE δ rep = OgRepC OgReq C (A 5) [17] VIII δ req = 8077/776 10.4 (A 6) Caced RREP RREP n rep n rep = OgRepC +wrep C OgRep C (A 7) [17] VIII n rep = (8077 + 8894)/8077 2.10 (A 8) xx xx xx 1993 1995 1996 1986 OS/ IEEE 10

Abstract In on-demand ad oc routing protocols suc as DSR, control messages tend to increase as te mobility and te number of nodes increase. On te oter and, it is reported tat te trougput of IEEE 802.11 DCF, wic is often used as te MAC layer in ad oc networks, is remarkably deteriorated wen idden nodes exist. We investigate ow muc control messages of routing protocol exert on te trougput wen idden nodes exist, in order to clarify quantitatively conditions were te ad oc networks using DCF are practical. In tis paper, we analyze te influence on trougput by te control messages of DSR numerically. As a result, we found tat te DSR control messages does not affect trougput if te node density is very low. Key words DSR, control messages, IEEE 802.11 DCF, trougput, idden terminals