ビーム物理_第4回.key

Similar documents
生活設計レジメ

I II III 28 29

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)



…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

WINS クラブ ニュース

i


Wide Scanner TWAIN Source ユーザーズガイド

untitled

福祉行財政と福祉計画[第3版]

加速器の基本概念 V : 高周波加速の基礎

橡ミュラー列伝Ⅰ.PDF

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル

- 2 -


1 (1) (2)

4/15 No.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


provider_020524_2.PDF

「産業上利用することができる発明」の審査の運用指針(案)



178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

untitled

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x



news

ëoã…éqä‘ëäå›çÏóp.pdf

ii

untitled

untitled

i

AccessflÌfl—−ÇŠš1

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

2

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

chapter5


活用ガイド (ソフトウェア編)

163 prépension prépension prépension prépension prépension




128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

パソコン機能ガイド

パソコン機能ガイド

原子・分子架橋系の量子輸送の理論 現状と展望


ito.dvi

文庫●注文一覧表2016c(7月)/岩波文庫

PowerPoint プレゼンテーション

静脈経腸栄養ガイドライン

EGunGPU

入門ガイド

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

SC-85X2取説


/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット

Transcription:

!

!

PART IV Synchrotron Radiation 1. Generation of Synchrotron Radiation! 2. Effects of Synchrotron Radiation on Beams

I. Generation of synchrotron radiation I. Maxwell Feynmann II. Syncrotron III. II. Effects of synchrotron radiation on beams I. II. III.

K-J.Kim s text book アメリカ物理学会加速器学校のテキスト シンクロトロン放射を真 面 目に取り扱う 位相の取り扱いに取り組むも 未完のようだ J.Schwinger s paper 1948~9 Schwinger Classical Electrodynamics (Jackson) Kim K.J., Characteristics of Synchrotron Radiation, AIP Conference Proceedings 184, vol. 1 p567 (American Institute of Physics, NewYork, 1989). PhysRev.75.1912.pdf Notes http://www.archive.org/details/classicalelectrodynamics M. Sands slac-r-121.pdf Notes.pdf Notes

I. Maxwell Feynman 1.Maxwell 2. Feynman

Maxwell Maxwell

Lorentz

Green s δ

unit aming vector

t : " t :

t t (t)

Heaviside-Feynmann Coulomb Mixture " unit aiming vector n

II. Syncrotron 1. " 2.

ParametricPlot@r@tpD, 8tp, -tst, tst<, A PlotRange Æ 880, r<, 8-r, r<<d 10 r@tp_d := 8r H1 - Cos@Cmov tp ê rdl, r Sin@Cmov tp ê rd<; H* curvature,observer,energy *L r = 10; robs = 80, 100<; grel = 50; H* physical consts.*l Clv = 299 792 458; 1 e 0 = 4 Pi 10 ^H-7L Clv ; 2 qelec = 1.602176462 10 ^-H19L; H* particle velocity *L 1 Cmov = Clv SqrtB 1 - grel F; 2 tst = HPi ê 4L r ê Clv; 5 0-5 n 2 4 6 8 10-10

R@tp_D := Sqrt@Hrobs - r@tpdl.hrobs - r@tpdld; tobs@tp_d := tp + R@tpD ê Clv; Plot@tobs@tpD, 8tp, -tst, tst<, PlotRange Æ AllD n@tp_d := Hrobs - r@tpdl ê R@tpD; ParametricPlot@8tp, n@tpd@@1dd<, 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D -2. 10-8 -1. 10-8 1. 10-8 2. 10-8 3.36 10-7 -0.005 3.35 10-7 -0.010 3.34 10-7 3.33 10-7 -0.015 3.32 10-7 -2. 10-8 -1. 10-8 1. 10-8 2. 10-8 k@tp_d = D@tobs@tpD, tpd; Plot@k@tpD, 8tp, -tst, tst<d 0.30 ParametricPlot@8tobs@tpD, n@tpd@@1dd<, 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D -0.005-0.020-0.025-0.030 n x 3.32 10-7 3.33 10-7 3.34 10-7 3.35 10-7 3.36 10-7 0.25 0.20-0.010 0.15-0.015 0.10-0.020 0.05-2. 10-8 -1. 10-8 1. 10-8 2. 10-8 -0.025 n x

ParametricPlot@8tobs@tpD, n@tpd@@1dd<, 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D n x -0.005-0.010-0.015 3.32 10-7 3.33 10-7 3.34 10-7 3.35 10-7 3.36 10-7 5 10 7 0 n x 3.32 10-7 3.33 10-7 3.34 10-7 3.35 10-7 3.36 10-7 H* dnht'l dt = 1 kht'l dndt@tp_d = -0.020-0.025-0.030 dnht'l dt' *L 1 k@tpd D@n@tpD, tpd; -5 10 7-5.0 10 20 3.33562 10-7 3.33563 10-7 3.33564 10-7 3.33565 10-7 3.33566 10-7 3.33567 10-7 H* d2 nht'l 1 d dt 2 = 2 nht'l HkHt'LL 2 dt' 2 - k' dnht'l HkHt'LL 3 *L dt' d2ndt2@tp_d = 1 D@k@tpD, tpd D@n@tpD, 8tp, 2<D - Hk@tpDL2 Hk@tpDL 3-1.0 10 21 D@n@tpD, tpd; -1.5 10 21 ParametricPlot@8tobs@tpD, dndt@tpd@@1dd<, 8tp, -tst, tst <, AspectRatio Æ 1D -2.0 10 ParametricPlot@8tobs@tpD, d2ndt2@tpd@@1dd<, 8tp, -tst ê 10, tst ê 10 21 <, PlotRange Æ All, AspectRatio Æ 1D n x

Feynmann H* EHx,tL= q 4pe 0 : n R 2 + R c d J n dt R 2 N+ 1 d 2 n c 2 dt 2 > *L dnr2dt@tp_d = DB n@tpd, tpf ì k@tpd; R@tpD2 Efield@tp_D = qelec n@tpd 4 Pi e 0 R@tpD + R@tpD 2 Clv dnr2dt@tpd + 1 Clv d2ndt2@tpd ; 2 Table@ParametricPlot@8tobs@tpD, Efield@tpD@@iDD<, 8tp, -tst ê 10, tst ê 10 <, PlotRange Æ All, PlotPoints Æ 1000, AspectRatio Æ 1D, 8i, 1, 2<D 3.33562 10-7 3.33563 10-7 3.33564 10-7 3.33565 10-7 3.33566 10-7 3.33567 10-7 -5. 10-6 1.4 10-9 1.2 10-9 -0.00001 1. 10-9 -0.000015 8. 10-10 -0.00002 6. 10-10 -0.000025-0.00003-0.000035 4. 10-10 3.33562 10-7 3.33563 10-7 3.33564 10-7 3.33565 10-7 3.33566 10-7 3.33567 10-7

Fourier Nbin = 2^10; eqtime = Table@ FindRoot@ tobs@tpd ä Htobs@-tst ê 10D H1 - i ê NbinL + tobs@tst ê 10D Hi ê NbinLL, 8tp, -tst ê 10, tst ê 10<, AccuracyGoal Æ 24, WorkingPrecision Æ 34, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ AllD Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Abs@FdataD, PlotRange Æ 880, Nbin ê 10<, All<D -5. 10-6 -0.00001-0.000015-0.00002-0.000025-0.00003-0.000035 200 400 600 800 1000 0.000025 0.00002 0.000015 0.00001 5. 10-6 0 20 40 60 80 100

z t << "FourierSeries`" r@tp_d := :- K und Clv Sin@w u tpd grel w u, 1-1 + K 2 und 2 Clv tp - K 2 und Clv Sin@2 w u tpd >; 2 grel 2 I8 grel 2 M w u z 0.4 0.3 H* curvature,observer,energy *L K und = 1; l u = 0.04; N u = 10; robs = 80, 100<; grel = 50; H* physical consts.*l Clv = 299 792 458; 1 e 0 = ; 4 Pi 10^H-7L Clv 2 qelec = 1.602176462 10^-H19L; 0.2 0.1 H* undulater frequency, velocity of moving charge, time duration of observation *L 2 Pi Clv w u = ; Cmov = Clv SqrtB 1 - l u tst = l u N u ê Cmov; 1 F; grel 2 x -0.0001-0.00005 0.00005 0.0001 ParametricPlot@r@tpD, 8tp, 0, tst<, AspectRatio Æ 2, PlotRange Æ All, PlotPoints Æ 5000D

R@tp_D := Sqrt@Hrobs - r@tpdl.hrobs - r@tpdld; tobs@tp_d := tp + R@tpD ê Clv; Plot@tobs@tpD, 8tp, 0, tst ê N u <, PlotRange Æ AllD t 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 t 2. 10-11 4. 10-11 6. 10-11 8. 10-11 1. 10-10 1.2 10-10 k@tp_d = D@tobs@tpD, tpd; Plot@k@tpD, 8tp, 0, tst ê N u <, PlotPoints Æ 1000D κ 4. 10-8 3.5 10-8 3. 10-8 2.5 10-8 t 2. 10-11 4. 10-11 6. 10-11 8. 10-11 1. 10-10 1.2 10-10

unit aiming vector n@tp_d := Hrobs - r@tpdl ê R@tpD; Table@ParametricPlot@8tp, n@tpd@@idd<, 8tp, 0, tst ê N u <, AspectRatio Æ 1, PlotRange Æ AllD, 8i, 1, 2<D 1. 10-6 n x Table@ParametricPlot@8tobs@tpD, n@tpd@@idd<, 8tp, 0, tst ê N u <, AspectRatio Æ 1, PlotRange Æ All, PlotPoints Æ 1000D, 8i, 1, 2<D 1. 10-6 n x 5. 10-7 5. 10-7 -5. 10-7 2. 10-11 4. 10-11 6. 10-11 8. 10-11 1. 10-10 1.2 10-10 t -5. 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 t -1. 10-6 -1. 10-6 1 n z n1 z 1 1 1 1 1 1 t 2. 10-11 4. 10-11 6. 10-11 8. 10-11 1. 10-10 1.2 10-10 t 3.33564 10-7 3.33564 10-7 3.33564 10-7

Feynmamm 1.5 10-19 E Hx, tl = 6. 10-12 q 4 pe 0 : n R 2 + R c d dt n + 1 d2 n > R 2 c 2 dt 2 Ex Ex Ex 0.0010 1. 10-19 4. 10-12 5. 10-20 2. 10-12 0.0005 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 -5. 10-20 -2. 10-12 3.33564 10-7 3.33564 10-7 3.33564 10-7 -1. 10-19 -4. 10-12 -1.5 10-19 -6. 10-12 -0.0005 1.442 10-13 1.4415 10-13 Ez Ez 1.4 10-9 1.3 10-9 1.2 10-9 -0.0010 Ez 1. 10-9 1.441 10-13 1.1 10-9 1. 10-9 5. 10-10 1.4405 10-13 9. 10-10 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7 3.33564 10-7

Nbin = 2^15; eqtime = Table@FindRoot@tobs@tpD ä Htobs@0D H1 - i ê NbinL + tobs@tstd Hi ê NbinLL, 8tp, 0, tst<, AccuracyGoal Æ 14, WorkingPrecision Æ 24, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ All, Joined Æ TrueD 0.0010 Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Log@Abs@FdataDD, PlotRange Æ 880, Nbin ê 50<, All<, Joined Æ TrueD 0.0005-5 -0.0005 5000 10 000 15 000 20 000 25 000 30 000-10 -0.0010-15 -20-25 100 200 300 400 500 600

Nbin = 2^15; eqtime = Table@FindRoot@tobs@tpD ä Htobs@0D H1 - i ê NbinL + tobs@tstd Hi ê NbinLL, 8tp, 0, tst<, AccuracyGoal Æ 14, WorkingPrecision Æ 24, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ All, Joined Æ False, PlotStyle Æ PointSize@0.0003DD 0.0010 Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Log@Abs@FdataDD, PlotRange Æ 880, Nbin ê 100<, All<, Joined Æ FalseD 0.0005-5 5000 10 000 15 000 20 000 25 000 30 000-10 -0.0005-15 -0.0010-20 -25 50 100 150 200 250 300

III. 1. " 2.

Analytical method of radiation calculation General formula(another expression) Far-field approximation

Acceleration gives electric field far from the source where in other form

Power and spectrum Power Spectrum where

Photon number Amplitude of electric field E^2 gives finding probability of photons.

Polarization vector

Electric field of each polarization in time domain

Electric field calculated in frequency domain

Analytic calculation of radiation from bending Emitter time t and observer time t.

Power spectrum of bending radiation where e^2 N N (Ne)^2 Ne^2 "

σ-polarization %-polarization Total

IV. Effects of Synchrotron Radiation on Beams" 1. " 2. " 3.

Transfer matrix

Transfer matrix Transfer matrix Transfer matrix

Determinant

"

u i ( ) t i ( )

t t t

FEL i, j

emittance