Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Similar documents
Microsoft PowerPoint - 水と土の科学④

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

meiji_resume_1.PDF

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

untitled

日本内科学会雑誌第102巻第4号

The Physics of Atmospheres CAPTER :

i 18 2H 2 + O 2 2H 2 + ( ) 3K

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Microsoft PowerPoint - 水と土の科学④


Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

all.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

70 : 20 : A B (20 ) (30 ) 50 1

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Part () () Γ Part ,

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>

高校生の就職への数学II

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

85 4

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


Untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

量子力学 問題

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

i

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Note.tex 2008/09/19( )

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


TOP URL 1


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin


untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

C:/KENAR/0p1.dvi

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Mott散乱によるParity対称性の破れを検証

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

Chap11.dvi

橡博論表紙.PDF

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

II III II 1 III ( ) [2] [3] [1] 1 1:

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

液晶の物理1:連続体理論(弾性,粘性)

抄録/抄録1    (1)V

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gmech08.dvi

研修コーナー

パーキンソン病治療ガイドライン2002

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

PDF

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

Transcription:

1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s)

2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

1.2 3 (a) (b) 1.2 a dt dh dq dq = adh dq dq = kaidt adh = kaidt = ka(h/l)dt h2 1 1 dh = ka h al dt h 1 1 h 1 t2 dh = ka dt al t 1

4 1 [log e h] h 2 h 1 = ka 1 al [t]t 2 t 1 (log e h 2 log e h 1 ) = ka 1 al (t 2 t 1 ) (log e h 1 log e h 2 ) = ka 1 al (t 2 t 1 ) k = k = h 1 log e = ka (t 2 t 1 ) h 2 al al A(t 2 t 1 ) log h 1 e (1.4) h 2 2.30aL A(t 2 t 1 ) log h 1 10 (1.5) h 2 1.3 ( 10 cm 12.7 cm) 5 B ( θ S r k r ) B 0.95 ( 0.9 ) B B

1.3 5 (1) 1.3 110 cm ( 28 cm 16 cm 9850 cm 3 ) ( 23,000 cm 3 ) 1.0 cm 12.0 cm 26.2 cm 50 kpa 1.3 (1.6) k s = QL Ath = 0.26 Q th (1.6)

6 第 1 章 飽和土の透水 ここに Q は流量 A は供試体の断面積 (19.6 cm2 ) h は水位差 L は供試体の高さ (5.1 cm) t は計測時間である 変水位透水試験の飽和透水係数は 次の式 (1.7) より求めることができる ks = 2.3aL h1 16.25 h1 log10 = log10 At h2 t h2 (1.7) ここで a はアクリル管の断面積 (13.85 cm2 ) A は供試体の断面積 (19.6 cm2 ) L は 供試体の高さ (5.1 cm) h1 は計測開始時の水位差 h2 は計測終了時の水位差 t は計測 時間である チャンバー内の供試体寸法は 式 (1.6) 式 (1.7) にも出てきたように 直径 5.0 cm 高さ 5.1 cm で体積は 100 cm3 である (写真-1.1) 供試体の組立は カラムにゴム製の O リングを取り付け回転させるだけで 試料受器に固定できるように工夫してあり 通水断 面を容易に確保できる 写真 1.1 チャンバー内の供試体 測定手順は 供試体をセットし底面から浸透させ チャンバー内の所定の水位まで給水 する この水位と二重管ビューレット内の水位を一致させ 真空脱気を 1 時間行い 背圧 P (圧力が低いと計測が難しいので 196.2 kpa) をかけて供試体内に流入した水量 V を 計測し 式 (1.8) から飽和度を換算する Sr = 1 P0 V 1 H P Vv ここで H はヘンリー係数 P0 は大気圧 Vv は供試体の間隙部分の体積である (1.8)

1.3 7 B (29.4 kpa 9.81 kpa B ) 1 3 3 B (2) 1.4 B B B B B 1.4 B 1.5 B ( ) 1.0 cm

8 1 1.5 1.4 0.5 1.0 Re (Re < 1) 1.6 1 1 B B 3 B B B

1.3 9 1.6 B 0.98 (3) a) Re (laminar flow) (turbulent flow) (Reynolds) (Reynold s number) (Critical Reynold s number) R e = vd ν (1.9)

10 1 v (m/s) D (m) ν (m 2 /s) R e 2000 R e 1 R e = ρ wvd µ (1.10) v (cm/s) D (D 50 D 60 )(cm) µ (g/s cm) (1.1) m 0.5 < m < 1 v = ki m (1.11) b) B (A.W. Skempton) u = B { σ 3 + A ( σ 1 + σ 3 )} (1.12) A B A A f > 0 A f < 0 A( σ 1 σ 3 ) B B < 1 B = 1 K 0 V 0 e 0 n 0 V 0 n 0 σ v0 ( σ = hγ w + σ v0 h γ w ) u

1.3 11 V w K 0 C w V w = n 0 V 0 C w u (1.13) ( σ = hγ w + σ v0 ) σ v ε v ε v = C s σ v (1.14) C s K 0 V s V s = V 0 C s σ v (1.15) (1.13) (1.15) n 0 V 0 C w u = V 0 C s σ v (1.16) σ v = σ v + u (1.16) σ v u = 1 1 + n 0 C w /C s σ v (1.17) (1.17) C w /C s C w /C s (1.17) (1.18) u = σ v (1.18) (1.18) B B = u σ v = 1 (1.19) (1.20) B = u σ v < 1 (1.20)

12 1 (back pressure) c) 1.1 C K( ) H 0 273 0.0288 5 278 0.0260 10 283 0.0235 15 288 0.0216 20 293 0.0201 25 298 0.0188 30 303 0.0176 35 308 0.0165 (1.21) S r S r = 1 [ ] 1 H P 0 1 P 0 P 1 H S r0 (1.21) H 1.1 P 0 (98.1 kn/m 2 ) P S r0 P 0 (V a0 + HV w0 ) = (P 0 + P )(V a1 + HV w1 ) (1.22) V a0 V a1 P V w0 V w1 P

1.4 13 V V a0 V a1 = V V w1 V w0 = V (1.23) (1.22) (1.23) V a1 V w1 V (H 1)(P 0 + P ) + P (V a0 + HV w0 ) = 0 (1.24) S r0 S r0 = 1 H V (P 0 + P ) V v P (1.25) (1.25) V v V P (1.21) (1.25) ( (1.8)) S r = 1 1 H P 0 V P V v (1.26) 1.4 (v = ki) k v k h 1.7 x v x ab (1.27) (1.28) ( v x x, z + z ) = v x (x, z) + 1 2 2 ( v x (x, z) + 1 ) v x 2 z z v x z (1.27) z z (1.28)

14 1 1.7 cd x (1.29) (1.30) ( v x x + x, z + z ) = v x (x, z) + v x 2 x x + 1 v x z (1.29) 2 z ( v x (x, z) + v x x x + 1 ) v x 2 z z z (1.30) 1.8(a) x q x (1.28) (1.30) ( q x = v x (x, z) + 1 ) ( v x 2 z z z v x (x, z) + v x x x + 1 ) v x 2 z z z = v x x z (1.31) x 1.8(b) q z = v z x z (1.32) z (1.31) (1.32) 0 q x + q z = v x x x z + v z z x z = v x x + v z z = 0 (1.33)

1.4 15 (a) (b) 1.8 v x k h ( ) h v x = k h i = k h x i h x i = h x, i = h z, v x = k h h x, v z = k v h z (1.34) (1.34) (1.33) k h = k v 2 h k h x 2 + k 2 h v z 2 = 0 (1.35) 2 h x 2 + 2 h z 2 = 0 (1.36) (1.36)

16 1 1.5 1 2 3 ( ) 1.9 1.9 H v ( α+ β = 90 ) H h H =

1.5 17 0 H x z(x z ) h h x = z = 0 (1.37) x z 1.9 (1.38) (1.39) v x H = cos α, z h v x = k h x, v x v = cos β, v z v H = sin α (1.38) v h z = k v z (1.39) = sin β (1.40) (1.39) (1.40) cos β = k h v h x, sin β = k v v h z (1.41) (1.38) (1.41) cos(α + β) = cos α cos β sin α sin β = x H = k ( ) h h x + Hv x z z ( k v ) ( h z ) ( k x H v ) h z (1.42) (1.42) (1.37) 0 y = cos x 0 π/2 α + β = 90 1.10 ( ) 1 Q Q = kiat(cm 3 ) ( 1.11) a h 8 1 8( 1 8 ) N d

18 1 1.10 1.11 N f ( 4(1 4 ) ) N d N f 1 q q = kia = k h N d 1 a a 1 = k h N d (1.43) h/n d (1/a) i = h L = h 1 a 1 a N d a 1 A Q (1.43)

1.5 19 N f Q = k h N f N d (1.44) k = 2.0 10 5 cm/s 1 m Q = k h N f N d = 20 10 5 750 4 8 100 = 0.75 cm3 /s (1.45) h 27.0 m 19.5 m 7.5 m=750 cm cm 1 m 100 cm 2 v = ki = k( h/l) ( ) ( ) 3 (1.46) (p/ρ w ) z v 2 /2g p ρ w + z + v2 2g = const. (1.46) p ρ w + z = const. (1.47) (1.47) 1.12 A B h = 27.0 19.5 =7.5 m El.18.0 m A 3.0 m B

20 1 1.12 6.0 m + = A p + z = H h ρ w N d p + ( 3.0) = 9.0 7.5 ρ w 8 1 p = 11.06 m (1.48) ρ w H z (7.5/8) 1 ( 1) B ( 6) p + ( 6.0) = 9.0 7.5 ρ w 8 6 p = 9.38 m ρ w El.0.0 m A H = 27.0 m z = 15.0 m p + 15.0 = 27.0 7.5 ρ w 8 1 p = 11.06 m ρ w

1.5 21 1.13 N d N f ( ) 1 % Lambe N f = 4 N d = 12 (N f /N d = 0.333) k = 5.145 10 6 m/s Q 10.29 10 6 m 3 /s 1.2 1.13 Lambe 1.2 1.13 N f N d N f /N d Q( 10 6 m 3 /s) (%) 3.20 10 0.320 9.88 4.0 4.03 12 0.336 10.37 0.8 5.39 16 0.337 10.40 1.0 1.14 (1.48) ( ) 1.14(a) (b) 1 7 1.14(a) (b) N f = 4 N d = 14 1.5 m II 1 ( ) p + ( 1.5) = 6.0 6.0 ρ w 14 6.5 p = 4.71 m p = 4.71 t/m 2 = 46.2 kn/m 2 ρ w

22 1 1.13

1.5 23 1.14 1.3 (kn/m 2 ) 1 2 3 4 5 6 7 II 46.2 44.1 39,9 35.7 31.5 27.3 23.1 III 65.2 61.0 56.8 52.6 48.3 44.1 42.0 III 1 ( ) p + ( 1.5) = 6.0 6.0 ρ w 14 2 p = 6.64 m p = 6.64 t/m 2 = 65.2 kn/m 2 ρ w

24 1 II 1 7 1.3 1.6 x z R ( ) 1/R 1.15 k h k v 9

1.7 25 R = kv 1 = k h 9 = 1 3 (1.49) x ( ) R 1.15 III (a) (b) 1.14(b) 1.7 (Muskat) 1.16 Muskat D d 1 d 2 Q k h 1.10 (1.45) 1.10 k = 2.0 10 5 cm/s 1 m 1.16 Muskat Q = k h N f N d = 20 10 5 750 4 8 100 = 0.75 cm3 /s

26 1 1.16 D = 18.0 m d 1 = 9.0 m d 2 = 0 m d 1 /D = 9.0/18.0 = 0.5 d 2 /d 1 = 0 1.16 Q/kh = 0.5 Q Q = 0.5 kh = 0.5 2.0 10 5 750 100 = 0.75 cm 3 /s Q/kh N f /N d d 2 1.17 1.17 α α (1.44) α = N d /N f k = Q h N d N f = Q h α (1.50) N d N f α 3.5 4.5

1.8 27 1.8 (Dupuit) (a) (b) (c) 1.18 1 1.18(a) o R abc 1.18(b) 1.18(b) (c) n q = kd dh dx (1.51) D = 2 tan θx θ = 45 D = 2x x = nr h = H x = R h = H/2 (1.52)

28 1 (1.51) (1.52) dh = q 2xk dx h = q 2k ln x + C C = q ln nr + H 2k H 2 = q 2k ln R q ln nr + H 2k H 2 = q 2k ln R nr k = q H ln 1 n (1.53) (1.50) (1.53) α ln n 1 1.19 2 1.19 nr q = πrv = πrk dh dr (1.54)

1.8 29 (1.54) (1.52) dh = q πrk dr h = q πk ln r + C C = q ln nr + H πk H 2 = q πk ln R + q ln nr πk H 2 = q πk ln R nr k = q H ln 1 2 n π (1.55) α ln n 1 2/π (1.53) (1.55) α n 1.20 α 1.20