01_辻

Similar documents
untitled

Al-Si系粉末合金の超塑性


Methods for estimation and determination of grain size Yoshimasa TAKAYAMA*

2 SEM-EBSD R EBSD SEM-EBSD SEM-EBSD 法 で 測 定 される 結 晶 方 位 1. 鉱 物 の 結 晶 軸 と 結 晶 軸 の 座 標 系 7 a, b, c 3 a b c c b c a a b x y z a b c z c K C x C, y

特-4.indd

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

HAJIMENI_56803.pdf

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

渡辺(2309)_渡辺(2309)

金属間化合物における粒内変形支配の超塑性的挙動に関する研究 26 AF キーワード 1. 緒言 1 1) 2) Class I 3) 3) Class I Cottrell Jaswon 4) 5) Solute drag 5 solute drag 3 3 6) 1 Ti 3 Al

平成18年度


1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

【実績報告書】後藤.doc

Undulator.dvi

スライド タイトルなし

program_japanese

F-08E

text_0821.dvi

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

_FH28_J.qxd


41 1 Table 1. Chemical composition of alloys (mass%). Alloy Fe Cr Al S Pd Pt Fe 20Cr 4Al (Standard) Bal Fe 20Cr 4Al (FZ) Bal


Rietveld analysis and its application Abstract A brief review has been presented on the Rietveld method and its recent development. It consists of (1)

卒業論文

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

A Few Problems in the Development of Shape Memory Alloys ; Shuichi Miyazaki, Kazuhiro Otsuka (Inst.' of Materials Science, Univ. of Tsukuba, Sakura-mu

着色斜め蒸着膜の光学的性質~無機偏光膜への応用

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

untitled

2357

i

J. Jpn. Inst. Light Met. 63(9): (2013)

株主通信:第18期 中間

2

株主通信 第16 期 報告書

21 POINT 1 POINT 2 POINT 3



p01.qxd

1



平成27年度版 税金の本 第5章 贈与と税金 第2節 贈与税の特例 (PDF)

1003shinseihin.pdf

市民参加プログラムパワーポイント版 資料編

ワタベウェディング株式会社

30

POINT POINT P


5


untitled


14

untitled



[商品カタログ]ゼンリン電子地図帳Zi16

46

株式会社栃木銀行


514

untitled


ヤフー株式会社 株主通信VOL.16

untitled

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

J. Jpn. Inst. Light Met. 65(6): (2015)


第13期りそなグループ 報告書

untitled

CABIN CABIN CABIN CABIN CABIN CABIN

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

RX501NC_LTE Mobile Router取説.indb

日立金属技報 Vol.34

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

M&M2015

DiovNT

PowerPoint プレゼンテーション

untitled

X線分析の進歩36 別刷


Mott散乱によるParity対称性の破れを検証

表紙最終

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

20 m Au 2. 現行のマイクロバンプ形成技術における課題 Au Au Au 2 WB 11 m m 1 m 2008 Au FC m 10 m 30 m OTK Au 表 1 マイクロバンプ形成におけるめっき法の比較 3. 無電解めっきによる Au

.V...z.\

201604_建築総合_2_架橋ポリ-ポリブテン_cs6.indd

A-FR

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Transformation-Induced Plasticity a TitleMartensitic Transformation of Ultra Austenite in Fe-Ni-C Alloy( Abstrac Author(s) Chen, Shuai Citation Kyoto

微粒子合成化学・講義

15

158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X (5) (magnetostriction) (magnetostriction stress measurem

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

Transcription:

20 EBSD 2008.11.28 scanning electron microscope: SEM EBSD electron back scattering diffraction [1-4] 10 EBSD anisotropy polycrystal orientation texture EBSD EBSD EBSD EBSD Table 1 EBSD

Table 1-10 mmφ < ~60 min / pole figure [5,6] 1 < 1 mmφ < ~30 min / point [6] 5 < 10 µmφ < ~30 min / point [7-9] 0.5 < 5 µmφ < ~15 min / point [10,11] 0.5 < 5 µmφ < ~30 min / point [11-13] 0.1 < 10 nmφ < <0.02 s / point [1-4] < 10~15 1 µmφ < ~10 min / point [14] 0.1 < nmφ < ~5 min / point [15,16] X X [5,6] X 111 pole figure 111 X X orientation determination function: ODF [6] Figure 1 X ODF [17] ODF [6] X X

Fig.1 {111} ODF Al [17] Laue X X [18,19] {111}, {110}, {100} SEM [7-9, 20-22] Figure 2 Fe-19Cr Fe-36Ni SEM [23] BCC {110} 12 <111> FCC {111} {001} <110>

[23,24] Fe-19Cr SEM Fig.3 [25] {001} {111} 10 m Fig.2 Fe-19Cr Fe-36Ni SEM [23]

Fig.3 Fe-19Cr SEM [25] SEM scanning electron microscope EBSD X [10,11] Figure 4 [11] EBSD Kikuchi X Fig.4 X SEM

Fig.4 [11] SEM Fig.5 (a) [13] Fig.5 (b) Kikuchi ECP electron channeling pattern [11-13] Kikuchi m ECP ECP Fig.6 [26] Fe-19Cr 185 Fig.5 (a) ECP [13] (b) ECP

Fig.6 ECP Fe-19Cr 185 TEM transmission electron microscope TEM SAD selected area diffraction Fig.7 001 [001] 10 15 [14] SAD EBSD

Fig.7 BCC [27]

EBSD EBSD SEM electron back-scattering pattern Kikuchi Kikuchi EBSD Fig.8 EBSD 1973 [1] EBSD 1991 1993 Adams [28,29] Orientation Imaging Microscopy (OIM) [1] Fig.9 EBSD SEM microstructure grain boundary interface Kikuchi EBSD OIM Fig.8 Kikuchi SBSD

Fig.9 EBSD [3] EBSD Kikuchi 0.1 ECP Fig.6 EBSD EBSD

EBSD ECP Fig.10 ARB 4.8 EBSD 200nm 40 50nm Fig.10 ARB 4.8 Al EBSD (a) ND (b) RD (c) [30] EBSD Figure 11 EBSD [31,32] [31,32] EBSD EBSD Fig.11 [33]

Fig.11 (a) 28.5at%Ni (b) 0.2wt%C EBSD [31,32] EBSD [33,34] 1 2 EBSD TEM Kikuchi TEM/Kikuchi EBSD [15] TEM/Kikuchi EBSD [1] Electron Backscatter Diffraction in Materials Science, Edited by A.J.Schwartz, M.Kumar and B.L.Adams, Kluwer Academic / Plenum Publishers, New York, (2000). [2] Microtexture Determination and its applications, V.Randle, The Institute of Materials, London, (1992) [3], 50 (2000), 86. [4], 40 (2001), 612. [5] (1984) [6] X (1977) [7], 18 (1979), 282.

[8] 18 (1979), 642. [9], 20 (1981), 377. [10], 18 (1979), 632. [11], 33 (1983), 491. [12], 13 (1974), 177. [13], 42 (1992), 306. [14] E.Furubayashi: Scripta Metall. Mater., 27 (1992), 1493. [15] S.Zaefferer: J. Appl. Cryst., 33 (2000), 10. [16], 57 (1993), 726. [17] N.Tsuji, Y.Nagai, T.Sakai and Y.Saito: Mater. Trans. JIM, 39 (1998), 252. [18] D.Juul Jensen, E.M.Lauridsen, L.Margulies, H.F.Poulsen, S.Schmidt, H.O.Sørensen and G.B.M.Vaughan: Materials Today, 9 (2006), 18. [19], 48 (2008), 301. [20] G.E.G.Tucker and P.C.Murphy: J. Inst. Metals, 8 (1952-1953), 235. [21], 22 (1958), 320. [22], 22 (1958), 324. [23] (1994) [24] (1992) [25] N.Tsuji, K.Tsuzaki and T.Maki: ISIJ International, 32 (1992), 1319. [26] N.Tsuji, K.Tsuzaki and T.Maki: ISIJ International, 33 (1993), 783. [27] (2001) [28] B.L.Adams: Mater. Sci. Eng., A166 (1993), 59. [29] B.L.Adams, S.I.Wright and K.Kunze: Metall. Trans. A, 24A (1993), 819. [30] (2005) [31] H.Kitahara, R.Ueji, M.Ueda, N.Tsuji and Y.Minamino: Mater. Characterization, 54 (2005), 378. [32] H.Kitahara, R.Ueji, N.Tsuji and Y.Minamino: Acta Mater., 54, (2006), 1279. [33] A.F.Gourgues-Lorenzon: Int. Mater. Rev., 52 (2007), 65. [34] X.Huang, N.Tsuji, N.Hansen and Y.Minamino : Mater. Sci. Eng. A340 (2003), 265. [35] N.Kamikawa, N.Tsuji, X.Huang and N.Hansen: Acta Mater., 54, (2006), 3055.