マネタリスト・モデルによるスタグフレーションの分析

Similar documents
I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


i


Wide Scanner TWAIN Source ユーザーズガイド


1 (1) (2)

- 2 -


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル

橡ミュラー列伝Ⅰ.PDF

untitled

福祉行財政と福祉計画[第3版]

provider_020524_2.PDF

「産業上利用することができる発明」の審査の運用指針(案)



178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )



幕末期の貨幣供給:万延二分金・銭貨を中心に


ii

untitled

i

AccessflÌfl—−ÇŠš1

2

デフレの定義(最新版).PDF

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Exif Viewer, DPOF Editor 使用説明書

アロー『やってみて学習』から学習:経済成長にとっての教訓 Learning from `Learning by Doing': Lessons for Economic Growth



x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

ito.dvi

10:30 12:00 P.G. vs vs vs 2

「住宅に関する防犯上の指針」案

入門ガイド

SC-85X2取説


<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

仏大 社会学部論集47号(P)/6.山口

2 (cf. 1995) (1) (Call Externality) (2) (Network Externality) / 2 Leibenstein (1950) Rohlfs(1974) 1.1 Leibenstein(1950) (Morgenstern 1948) (Von Neuman

スライド 1

untitled

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Microsoft Word - Šv”|“Å‘I.DOC

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

II III II 1 III ( ) [2] [3] [1] 1 1:



% 32.3 DI DI




<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

DGE DGE (1) ( 1


財政赤字の経済分析:中長期的視点からの考察

Transcription:

72 53 6

72 1978 6 1 4 1. 4 2. 8 3. 12 17 1. 17 2. 20 ) 20 ) 21 ) 21 ) 22 ) 23 ) 24 ) 24 ) K 24 3. 24 1

31 1. 46 51 31 ) 15 31 ) 32 2. 53 60 33 ) 33 ) 34 ) 34 ) 35 3. 35 38 40 44 45 2

48 49 30 326.1367.9456.8 10 4811.64920.7 48 49 1 48 49 46 483 (1) (2) 1 (1) 2 1 2 2 2 3 2 4 (2) 2 6 (3) 4 8 4 9 346.5 115.6 195.9 73.2 165.6 25.3 63.3 16.2 38.8 11.6 11.8 15.9 20.7 22.6 31.4 1

48 49 2 3 48 49 47 48 2 47 48 monetary approach Keynesian approach 48~49 48~49 46~48 20 2

a second order error learning model an open economy 50 52 40 48 49 46 48 48 49 Andersen et al 5 a closed economy 3

2 2 (a) y 19201930 2 (b) 4

2 (a) (b) 3 3 (1) (2) (3) 4 (a) (1) (2) (3) (1) 5

4 (a) (b) (2) (3) 4 (b) 1960 1960 1960 6

7

LM IS LM IS 48 49 accepted theory 48 49 (1) (2) 1960 time path time path 8

expectationsaugmented Philips curve Friedman a closed economy C Y f r (1) P P P I g ( r ) (2) Y C I S Y C I (3) P P P P P P M D Y P l r (4) P M S h( r ) (5) M D M S (6) (1) induced (2) (3) (4) (5) (6) C I Y r P M D M S i ii iii (7) P P0 (7) (8) P Y y y0 (8) dichotomy Y y0 P (1) (3) 3 C/P I/P r (1) (2)(3)(9) y0 f ( y0 r ) g( r ) (9) r r0 (5) M S M0 (6)(4) (10) M0 P l ( y0 r0) (10) y o l( y0 r0)/y0 V 1/V (11)(12) 9

M V Py (11) MV P (12) y (4) (4a) M D Y l( r ) (4a) (13) dp r ρ P (13) dt ρ dp P dt (14) dy r ρ Y dy dt y dt dy ρ g Y (14) dt g ρ g ρ g K0 M D Y l( r ) (4a) M S h( r ) (5) M D M S (6) dy r K0 Y (15) dt dy Y dt M D M S Y r 4 M (t) (4a) (5) (6) M ( t) Y (t) (16) l ( r ) Y (t) V (r) M (t) (17) V (17) (15)(17) (1) (3) (15) (17) (1) ( expectations hypothesis ) 10

1970 Andersen et al 5 reduced form 5 1953I 1969IV 4 m 1 f 1 0 m5 f5 0 ΔY t 2.67 4 ΔM t i 4 mi fi ΔF t i i 0 i 0 (3.46) R 2 0.66 S 3.84 DW 1.75 m0 1.22(2.73) f0 0.56(2.57) m1 1.80(7.34) f1 0.45(3.43) m2 1.62(4.25) f2 0.01(0.08) m3 0.87(3.65) f30.43( 3.18) m4 0.06(0.12) f40.54(2.47) m i 5.57(8.06) f i 0.05(0.17) () 1. ΔYt t GNP ΔM t i t i M1 ΔF t i t i high-employment 2. 5 5 explicit (1) 11

(2) 3 4 5 2 MPS MIT-Penn- Social Science Research Council econometric model 30 3. 6 6 48 6.7 10.0 23.2 18.2 21.8 6.2 9.3 20.5 17.5 23.0 12

48 2 3 4 price-taker M. Parkin 10 the low of one price tradables nontradables 13

M. Blejer 9 the expectaions-augmented excess demand model of price determination R. Cross and Laidler 11F. Spinelli 12 A. Horseman 13 Parkin et al 14 Genberg 15 M. Parkin and G. W. Smith 14 () Cross and Laidler 11 product differentia tion 14

45 70 97 L. C. Andersen and J. L. Jordan 6 / Keran M, W. 7 2 9 15

16 5 I

1. 7 2 8 712 12 7 (1) T ΔY t f 1 ΔM t ΔM t n ΔE t ΔE t n Δ Δ T Y t Y t n (2) P t f2 D t D t n P e t 1P m t P e t 1 (3) D t ΔY t ( X F t X t 1 ) (4) X t Y t /P t (5) P e t P e t 1 f3p w t P e t 1 P w t 1 P e t 2DMK t XDUM ZDUM (6) U t f4 G t 3 (7) G t X F t X t F 100 t X (8) Y t Y t 1 ΔY t (9) P t P t 1P t 1 P t /100 (10) X X t X t 1 t 100 X t 1 (11) P w t f5 D t D t n P e t 1P m t P e t 1) (12) K M t DMK t 100 ( 69.272 0.1822T 0.001384T 2 ) Yt 1. ΔY t 2. P t 3. D t 4. X t / 5. P e t 10 10 17

6. U t 7. G t 8. Y t 9. P t 10. X t 11. P w t 12. DMK t K 2 1. ΔM t (M2) 2. ΔE t 3. X F t 45 T 4. Δ / Y t 5. P m t 6. XDUM 46 7 91.0 0 7. ZDUM 49 1 31.0 0 8. T 40 7 91 10 451.0 10 (1) 3 reduced form (2) (3) ( X F t X t 1 ) (4) (ΔY ) (1)(2) (4) (5) K 2 (6) (7) (8) (10) (11) (2) (5) (2) (12)K/ 8 18

8 G N P K 19

(1) K 2. 40 51 40 4 652 1 3 / 3 2 9 405240 4 6 52 1 3 3 m 1 e 1 t 1 0 m5 e5 t5 0 ΔY t 4 mi ΔM t i 4 ei ΔE t i 4 T 488.55 ti Δ i 0 i 0 i 0 (1.57) Y R 2 0.711 S 955.9 DW 1.785 m0 0.0021(0.01) e0 0.4106(3.90) t0563.1( 2.23) m1 0.1297(1.13) e1 0.3156(2.66) t1477.6( 1.90) m2 0.2882(7.92) e20.0289( 0.26) t2 61.2( 0.34) m3 0.3825(2.88) e30.3671( 2.90) t3 368.8( 1.60) m4 0.3181(2.03) e40.4428( 3.95) t4 495.0( 2.09) m i 1.1208 e i 0.1126 t i 238.0 ΔY t t 10 ΔM t i t i M2 10 ΔE t i t i 10 Δ Y T t i t i t i 20

5 2 3 (1) (2) ii D t D t ΔY t (X F t X t 1 ) ΔY t t X F t t II X t 1 t 1 X F t X t 1 ΔY X F t X t 1 iii 1 1,900 6 Carson, Parkin 16 I 10 2a second order error 10 44 I 52 I P e t P e t 1 0.2297 0.3102(P w t P e t 1) 0.1787(P w t 1 P e t 2) (5.21) (8.45) ( 6.51) 1.671XDUM 4.021ZDUM 0.03933DMK t ( 6.71) ( 11.22) (2.81) R 2 0.883 S 0.24 DW 2.17 P e t =t P w t =t XDUM 46 7 9 1.0 0 ZDUM 49 1 3 1.0 DMK t =t KM2/ 21

learning model46 49 K 2 M. Parkin 18D. E. Rose P W t 6 P e t 1 31 P e t 18 46 7 9 1967 11 48 48 48 49 1 3 4 6 46 48 inertia II3 11 II3 22

11 40 II 52 I 3 d 1 0 d3 0 P w t 2 di D t i P e t 1 (P m t P e 0.068 0.9791 0.2810 t 1) (0.37) i 0 (7.42) (6.95) R 2 0.882 S 0.86 DW 1.387 d0 0.0001047(1.68) d1 0.0000605(3.16) d20.0000139( 0.22) d t 0.0001512 P w t t D t i t i P e t 1 t 1 P m t t v 12 6 12 40 II 52 I 3 d 1 0 d4 0 P 3 t d i D t i P e t 1 (P m t P e 1.138 0.595 0.185 t 1) i 0 (10.41) (7.74) (7.67) R 2 0.899 S 0.51 DW 2.339 d0 0.0000294(1.25) d1 0.0000341(2.46) d2 0.0000242(1.55) d3 0.0000095(0.38) d i 0.0000973 P t t D t t P e t 1 t 1 P m t t 23

52 10 12 Y t P t 13 13 42 II 51 I U t 1.149 0.0723G t 3 (41.16) (12.39) R 2 0.922 S 0.109 DW 1.23 U t t G t 3 t 3 K K 40 7 9 M 2 100 T 60.27 0.00138 2 0.1822 T Y (52.03) (0.60) (1.51) R 2 0.771 40 1 3. 5 9 10 11 12 13 7 14A L 44 51 46 47 24

14 44 51 25

26

27

28

29

30