H 975 [8] [9] 4 H [10] H [11] [15] H I H II H Fig. 2 H [16] [18] [19] H [8] Fig. 3 3 b, β, δ d Double U Joint [20] a e A G β 2 z C B

Similar documents
SICE東北支部研究集会資料(2012年)

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

SEJulyMs更新V7

28 Horizontal angle correction using straight line detection in an equirectangular image

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

鉄鋼協会プレゼン

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

JFE.dvi

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth


IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

特-3.indd

三石貴志.indd

1

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

untitled

DEIM Forum 2009 E

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

光学

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

GE巻頭言103.indd

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

9_18.dvi

Application of H Compensator to a First-order lag plus deadtime System with Changes in Characteristics õ Yuji YAMAKAWA*, Yutaka IDE**, Yoshiyuki NODA*

J. Jpn. Inst. Light Met. 65(6): (2015)

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

カルマンフィルターによるベータ推定( )

Public Pension and Immigration The Effects of Immigration on Welfare Inequality The immigration of unskilled workers has been analyzed by a considerab

7章 構造物の応答値の算定

21 Key Exchange method for portable terminal with direct input by user

ルーカス型総供給方程式の批判的吟味


IPSJ SIG Technical Report Vol.2017-ARC-225 No.12 Vol.2017-SLDM-179 No.12 Vol.2017-EMB-44 No /3/9 1 1 RTOS DefensiveZone DefensiveZone MPU RTOS

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

36 581/2 2012

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

KII, Masanobu Vol.7 No Spring

10_4.dvi

main.dvi

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

01-加藤 実-5.02

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Sobel Canny i

IT,, i

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum


橡表紙参照.PDF

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

I II III IV V

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

Fig. 1 Contact states Fig. 2 Model-based approach to monitoring of process state

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se


& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

R927清水信彦様.indd

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

Human-Agent Interaction Simposium A Heterogeneous Robot System U

,,,,., C Java,,.,,.,., ,,.,, i

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

国土技術政策総合研究所 研究資料

MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

( ) : 1997

3_39.dvi

<95DB8C9288E397C389C88A E696E6462>

1 1 CodeDrummer CodeMusician CodeDrummer Fig. 1 Overview of proposal system c

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

2005 1

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

Transcription:

974 Vol. 19 No. 8, pp.974 982, 2001 H 1 1 2 3 H Design of Hybrid Compliance using Upper/Lower Bound in the Frequency Domain Shaping and Control of Dynamic Compliance of Humanoid Shoulder Mechanisms Masafumi Okada 1, Yoshihiko Nakamura 1 2 and Shin-ichiro Hoshino 3 Design and control of mechanical compliance would be one of the most important technical foci in making humanoid robots really interactive with the humans. For task execution and safety insurance the issue must be discussed and offered useful and realistic solutions. In this paper,we propose a theoretical design principle of mechanical compliance. Passive compliance implies mechanically embedded one in drive systems and is reliable but not tunable in nature,while active compliance is a controlled compliance and,therefore,widely tunable,but less reliable specially in high frequency domain. The basic idea of this paper is to use active compliance in the lower frequency domain and to rely on passive compliance in the higher frequency. H control theory based on systems identification allows a systematic method to design the hybrid compliance in frequency domain. The proposed design is applied to the shoulder mechanism of a humanoid robot. Its implementation and experiments are to be shown with successful results. Key Words: H Control,Hybrid Compliance,Humanoid Robot,Frequency Dependent Dynamic Compliance 1. [1] [6] f y G G [7] Fig. 1 2000 6 16 1 2 3 NTT 1 Department of Mechano Informatics, University of Tokyo 2 Japan Science and Technology Corporation 3 NTT DATA Corporation Fig. 1 Shaping dynamic compliance JRSJ Vol. 19 No. 8 54 Nov., 2001

H 975 [8] 3 1 2 3 4 [9] 4 H [10] H [11] [15] H I H II H Fig. 2 H [16] [18] [19] H 2. 2. 1 [8] Fig. 3 3 b, β, δ d Double U Joint [20] a e A G β 2 z C B G E D D G 3 E β δ θ 21 θ 22 θ 41 θ 42 Fig. 4 E ( I R y θ 21 Rθ x 22 L z L 3 Rθ x 41 R y θ 42 Rπ) z R z 2 π(i 1)r = li 3 r := [ b 0 0 1 ] T (i =1, 2, 3) 1 2 R ξ θ ξ θ Lξ l ξ l l i E b B D E 1 l 1 l 2 l 3 Fig. 3 Cybernetic shoulder Fig. 2 Shaping dynamic compliance Fig. 4 Definition of rotations 19 8 55 2001 11

976 Fig. 5 The cybernetic shoulder with the rigid or elastic link θ 41 θ 42 l 1 = Js(θ 21,θ 22) l 2 3 L 3 l 3 E l i θ 41 θ 42 L J s Table 1 Spring constant and coefficient of viscosity Type Spring constant Coefficient of [N/m] viscosity [kg/s] 1 1.609 10 3 0.625 2 5.963 10 2 0.45 3 5.963 10 2 1.05 E k 1 k 2 k 3 θ 41 θ 42 L 3 C s 1 k 1 0 0 C s = J s 0 k 2 0 Js T 4 0 0 k 3 E θ 41 θ 42 L 3 2. 2 E Fig. 5 1 7 10 [mm 2 ] Fig. 5 2 φ5 [mm] Fig. 5 3 2 + Fig. 5 3 Fig. 5 1 Fig. 5 Table 1 Fig. 6 Humanoid robot 2. 3 Fig. 6 z PD 1 2 3 Fig. 7 1 [kg] [ e ] [ ] x e 0 y e 0 z 0 = 400 300 270 [mm] 5 JRSJ Vol. 19 No. 8 56 Nov., 2001

H 977 Fig. 10 Generalized control system Fig. 7 Experimental setup Fig. 11 Local feedback system [ z y ] [ G11 G 12 = G 21 G 22 ][ f u ] 8 z : y : f : u : Fig. 10 C f z Fig. 8 Step responses of the strain G zf G zf = G 11 G 12(I + CG 21) 1 CG 21 9 H G zf < 1 10 C H G(s) := sup G(jω) 0<ω< 11 Fig. 9 Frequency analysis Fig. 8 9 W f (s) 100 4 W f (s) = 6 (s + 100) 4 3 25 [rad/s] 3. H 3. 1 H [9] [ ] G11 G 12 G = G 21 G 22 7 H 3. 2 3. 2. 1 P P Fig. 11 C l P θ m θ u θ u θ m C l 19 8 57 2001 11

978 Fig. 12 Disturbance input y = G close f 16 15 G close Fig. 13 C v =0 y := y y 0 17 Fig. 13 Vibration control system θ u y 0 y θ r θ m τ K I k f f Fig. 12 J u J m y ẏ = [ ] [ ] θu J u J m 12 θ m P ] [ ] [ θu θ m P m1 τ u = P τ + τ m [ ] Pu1 P u2 P := P m2 13 14 P u1 P u2 P m1 P m2 K K f y y = G open f 15 Fig. 13 C v y 0 y y y 0 1 [ ] f y y = K(θu,θ m)g G = [ f y 0 y0 u 18 G sg m G ti k G tj G u P u2c l G sg m P u2c l G si k P u2c l G sj G s := (I + P m2c l ) 1 G t := I G s G u := P u1j T u + P u2j T m G m := P m1j T u + P m2j T m I : ] 19 20 21 22 23 18 y 0 C l f u C v 18 y = [ ] [ ] f Ḡ f Ḡ u 24 u C v C v C v 1 2 1 1 I 2 C v G close G close 1 II 3. 2. 2 C v Fig. 14 W 1 W 2 W 3 Fig. 14 C v f z 1 H JRSJ Vol. 19 No. 8 58 Nov., 2001

H 979 Fig. 14 Generalized control system for design of C v 1 G close W 1 < 1 25 G close < W 1 1 26 W 1 1 f z 2 ( ) W2 I G close W 1 < 1 27 G W 1 close > W 1 1 1 W 2 W 2 W 1 1 G close 28 29 W 1 W 2 f z 2 z 1 z 2 f z 3 ( ) 1 W 3 I + Cv Ḡ u Cv Ḡ f < 1 30 W 3 W 3 W 1 W 1 W 2 30 4. 4. 1 P Fig. 14 f u y 4. 2 C v Fig. 14 Ḡf Ḡu Ḡf Fig. 8 Ḡu u y Ḡ u M [21] 0.125 [mm] Ḡu OE Output Error [21] Ḡu Ḡm u Ḡ u Ḡf Fig. 8 Ḡf Ḡm f ARX [21] Ḡ m u = 1.47 10 5 (s + 6975)(s +34.7) (s +2.76 + 23.8j)(s +2.76 23.8j) 31 Ḡ m f = 5.48 10 2 (s +26.7 + 135j)(s +26.7 135j) (s +2.76 + 23.8j)(s +2.76 23.8j) ω =23.8 [rad/s] 4. 3 32 Case 1 31 32 Ḡm u Ḡm f Fig. 14 C v W 1 W 2 W 3 W 1 = 7(s + 15) 3 (s +5) 2 (s + 1000) 33 W 2 =0 34 290(s + 10)3 W 3 = 35 (s + 1000) 3 W 1 W 2 =0 W 3 Fig. 15 C v G open W 1 G close C v C v W 3 19 8 59 2001 11

980 Fig. 15 Gain plots of closed loop systems (Case 1) Fig. 17 Gain plots of closed loop systems (Case 2) Fig. 16 Step responses of the controlled system (Case 1) W 3 G open G close C v H 3. 2. 1 C v C v Fig. 7 Fig. 16 Fig. 8 G open C v 2 C v C v 3. 2. 1 Fig. 16 Fig. 15 Case 2 C v G open < G close 36 Fig. 18 Step responses of the controlled systems (Case 2) 12(s + 20) W 1 = 37 s + 1000 65 W 2 = 38 (s +5) 2 214(s + 10)3 W 3 = 39 (s + 1000) 3 Fig. 17 28 Case 1 W 1 1 G close G open Fig. 16 Fig. 18 Fig. 18 1.5 4. 4 2 1 1.5 JRSJ Vol. 19 No. 8 60 Nov., 2001

H 981 W 1 G close 0 C v C v 1 E Fig. 4 θ 41 θ 42 L 3 H 5. 4 1 2 H 3 4 JSPS RFTF96P00801 [ 1 ] R.P.C. Paul and B. Shimano: Compliance and Control, Proc. of the 1976 Joint Automatic Control Conference, pp.694 699, 1976. [ 2 ] H. Hanafusa and H. Asada: Stable Prehension by a Robot Hand with Elastic Fingers, Proc. of the 7th International Symposium on Industrial Robots, pp.361 368, 1977. [ 3 ] N. Hogan: Mechanical Impedance Control in Assistive Devicesand Manipulators, Proc. of the 1980 Joint Automatic Control Conference, TA10 B, 1980. [ 4 ] J.K. Salisbury: Active Stiffness Control of a Manipulator in Cartesian Coordinates, Proc. of the IEEE Conference on Decision and Control, 1980. [ 5 ] N. Hogan: Impedance Control: An Approach to Manipulation: Part 1 3, ASME Journal of Dynamic Systems, Measurement and Control, vol.107, pp.1 24, 1985. [ 6 ] K.F. L-Kovitz, J.E. Colgate and S.D.R. Carnes: Design of Components for Programmable Passive Imprdance, Proc. of IEEE International Conference on Roboticsand Automation, pp.1476 1481, 1991. [7] 1976. [8] 98 ROBOMEC 98 1BI2 3, 1998. [9] 99 ROBOMEC 99 2P1 78 107, 1999. [10] K. Glover and J.C. Doyle: A State Space Approach to H Optimal Control, in Three Decadesof Mathmatical System Theory (H. Nijmeijer, J.M. Schumacher eds.). pp.179 218, Springer Verlag, 1994. [11] 2 D.D. vol.29, no.12, pp.1421 1426, 1993. [12] µ 11 pp.29 32, 1993. [13] 12 pp.51 52, 1994. [14] 1 vol.32, no.7, pp.1011 1019, 1996. [15] 2 2 vol.32, no.7, pp.1020 1026, 1996. [16] H 20 pp.101 104, 1991. [17] 2 H 21 pp.121 126, 1992. [18] 5 pp.s 176 S 179, 1993. [19] H 13 pp.27 28, 1995. [20] M.E. Rosheim: Robot Evolution, The Development of Anthrobotics. JOHN & SONS, INC., 1994. [21] L. Ljüng: System Identification Theory for the User. 19 8 61 2001 11

982 Prentice Hall, 1987. Masafumi Okada 1969 3 21 1994 3 1996 9 1996 10 PD 1997 2 2000 4 2001 4 IEEE Yoshihiko Nakamura 1954 9 22 82 87 87 91 3 4 CG IEEE ASME Shin ichiro Hoshino 1976 5 25 1999 3 2001 3 NTT JRSJ Vol. 19 No. 8 62 Nov., 2001