薄膜結晶成長の基礎4.dvi

Similar documents
薄膜結晶成長の基礎3.dvi

プログラム

薄膜結晶成長の基礎2.dvi

本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

第86回日本感染症学会総会学術集会後抄録(I)


tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

抄録/抄録1    (1)V

nsg04-28/ky208684356100043077

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

LLG-R8.Nisus.pdf

パーキンソン病治療ガイドライン2002

研修コーナー

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

TOP URL 1

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

構造と連続体の力学基礎

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

GJG160842_O.QXD

日本医科大学医学会雑誌第7巻第2号

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

( ) ) AGD 2) 7) 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

H.Haken Synergetics 2nd (1978)

日本内科学会雑誌第102巻第4号


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

TOP URL 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

chap9.dvi

スケーリング理論とはなにか? - --尺度を変えて見えること--

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) I( ) TA: ( M2)

untitled

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Erased_PDF.pdf

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

CVMに基づくNi-Al合金の

nsg02-13/ky045059301600033210


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gmech08.dvi


1).1-5) - 9 -

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

201711grade1ouyou.pdf

untitled

DVIOUT-fujin

ohpr.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

Note.tex 2008/09/19( )

chap10.dvi

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

カイラル結晶化ver3pp.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

「国債の金利推定モデルに関する研究会」報告書

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

A

液晶の物理1:連続体理論(弾性,粘性)

85 4

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

30

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

zsj2017 (Toyama) program.pdf


_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

untitled

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

( ) ,

30 (11/04 )

untitled

成長機構

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

( ) ( )

Transcription:

4 464-8602 1 [1] 2 (STM: scanning tunneling microscope) (AFM: atomic force microscope) 1 ( ) 4 LPE(liquid phase epitaxy) 4.1 - - - - (Burton Cabrera Frank) BCF [2] P f = (4.1) 2πmkB T 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [3] 1

(P m ) (1.3 1.7) ( ) c(x, y) ( )f τ( E b τ exp (E b /k B T )) c t = D s 2 c c τ + f (4.2) (4.2) c = fτ( c ) v st (1.8) Δμ =(k B T/c 0 eq)(c c 0 eq) ( c 0 eq ) (1.26) (1.27) v st = K st k B T c 0 eq ( c c 0 eq Ω 2c 0 eq β k B TR ) ( =Ω 2 K st c c 0 eq Γ ) R (4.3) (Γ = Ω 2 c 0 β/(k eq B T )) Ω 2 1 R (κ =1/R) - V/Δμ j c K K st =(k B T/Ω 2 c 0 eq)k st (4.2) (4.3) l [3] c c 0 eq v st =Ω 2 Kst 1 + [(2D s /x s ) tanh (l/2x s )] 1 (4.4) ( c eq c s 4.1 ) x s D s τ τ. (c c 0 eq) Kst 1 [(2D s /x s ) tanh (l/2x s )] 1 j l V = v st (a/l) K st l<x s (4.4) Ω 2 (c c 0 eq)(2d s /x s )(l/2x s )=Ω 2 τ(f f eq )(l/τ) 2

4.1: BCF [5] V Ω 2 a(f f eq )=v S (f f eq ) ( f eq = c 0 eq/τ) (4.3) ( ) ( ) v =Ω 2 K c c 0 eq Γκ +Ω 2 K + c + c 0 eq Γκ (4.5) 1 2 (c ± ) K < K + (ES ) 4.4 4.2 T R 3

4.2: [3] (1.25) ξ ( 4.2) R τ dr dt K stω 2 β R (4.6) τ R 2 / βk st t R ( βk st t) 1/2 4.3 n (4.3) R 2c =Γ/(c c 0 eq ) 4

J i J i 1 c i (r) ci 1 (r) R N R i+1 R i R i 1 R 1 c 0 (r) 4.3: R n <R 2c R 2c τ R2 2c (4.7) K st Ω 2 β 2 R f R 0 1 a z ( R f 10 Ω2 2 c0 β ) 1/5 eq k B T D sa z R 0 t (4.8) [3] t 1/5 STM [4] 4.4(a) (111) STM 4.4(b) (c) 5

(a) (b) (c) 4.4: (a) STM (b) (c) ( [4] ) 4.3 - - (MS Mullins-Sekerka instability) ( 4.5(a)) ( 4.5(b)) 4.5(c) (b) (c) 6

4.5: [5] ( ) - λ λ D 3 d c λ λ D d c (4.9) λ 3 d c =(c 0 eq/k BT )v 2 S α (v S 1 ) - (c 0 eq/k BT )v S α/r c S =1/v S R 7

4.6: ES [6] 4.4 MS 2 ( ) MS (Bales-Zangwill instability) 4.6 τ x s ( ) x s ( x s ) ( ) ( 4.6(a)) ( 4.6(b)) 8

( ) y st (x, t) =vst 0 t q y st (x, t) =y st0 (t)+δy st (x, t) =v 0 st t + δy stq e iqx+ωqt, ω q ( 1.7 ) c(x, y, t) = c 0 (y, t)+δc(x, y, t) = c +(c 0 eq c )e (y v0 st t)/xs + δc q e iqx Λq(y v0 st t)+ωqt (4.10). ES c 0 (y, t) 2 2 y Λ q q 2 + x 2 s x q (4.2) ω q ω q = v 0 st(λ q x 1 s ) D s Ω 2 ΓΛ q q 2 (4.11) q ω q ( 1 2 v0 stx s D ) ( sω 2 Γ 1 q 2 x s 8 v0 stx 3 s + 1 ) 2 D sω 2 Γx st q 4 (4.12) 1 vst 0 2D s Ω 2 Γ/x 2 s (4.4) K st l vst 0 =Ω 2τ(f f eq )D s /x s f c ( f f c f eq 1+ 2 βω ) 2 (4.13) x s k B T (4.11) x s Λ q q ω q = v 0 st q D sω 2 Γq 3 (4.14) (4.14) vst 0 q max = 3D s Ω 2 Γ (4.15) 9

4.7: ES [6] Ω 2 Γ l D = D s /vst 0 (4.9) Si(111) 860 C Si(111) 1 1 7 7 7 7 4 1 1 ES [7] Si(111) [8] [9] 4.5 (x ) (y ) (step bunching) 4 1 1 7 7 7 7 10

4.8: ES 1 [10] ( ) ( ) (a) (b) 4.7 (K + > K ) ( ) ( 4.7(a)) ( ) ( 4.7(b)) n l k δy k y n (t) =vn(t)+δy 0 n (t) =vstt 0 + nl + δy k e ω kt+iknl (4.16) ω k (kl 1) 11

(a) t 1000 800 600 400 200 0 0 10 20 30 y (b) t 200 150 100 50 0 0 10 20 30 y 4.9: 1 [11] ( π 2 ω k 2l + 1 ) d d + v 0 2 d + + d stl k 2 π 2 x s 2(d + + d ) k4 + ivst [1 0 1 ] 6 (kl)2 k (4.17) d ± = D s /K ± (4.17) ω k vst 0 ( vst 0 < 0 ) k2 vst 0 ω k > 0 4.8 [9] 5 5 12

4 8 ( 4.9(a)) 1/2 4.8 4.9(a) ( 4.9(b)) [1] Crystal Letters No.40 (2009) 3; No.41 (2009) 3; No.42 (2009) 7. [2] W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. Roy. Soc. London 234A (1951) 299. [3], 2 ( 2008). [4] K. Thürmer, J. E. Reutt-Robey, E. D. Williams, M. Uwaha, A. Emundts and H. P. Bonzel, Phys. Rev. Lett. 87 (2001) 186102. [5], 2 ( 2002). [6], 3 ( 1997). [7] R. Kato, M. Uwaha, Y. Saito and H. Hibino, Surf. Sci. 522 (2003) 64. [8] M. Sato and M. Uwaha, J. Phys. Soc. Jpn. 65 (1996) 2146. [9] K. Yagi, H. Minoda and M. Degawa, Surf. Sci. Rep. 43 (2001) 45. [10] M. Sato and M. Uwaha, Phys. Rev. B 51 (1995) 11172. [11] M. Sato and M. Uwaha, Surf. Sci., 442 (1999) 318. 13