Similar documents
7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

空力騒音シミュレータの開発

Contents

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

! " # Engineering First

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

[ B ].indd

CVaR

JFE.dvi

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs


Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

untitled

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

人文学部研究年報12号.indb

untitled


工学的な設計のための流れと熱の数値シミュレーション

第6章_田辺.PDF

福岡大学人文論叢47-3

日立評論2007年3月号 : ソフトウェア開発への

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

新製品開発プロジェクトの評価手法

fiš„v8.dvi

NX Nastran brochure (Japanese)

CBR ( ) ( ), CBR EVE SAYFA (Enhanced Virtual Environment Simulator for Aimed and Yielded Fatal Accident) CBR 8),12) 屋外拡散予測システム 1 outpu

IPSJ SIG Technical Report Sphere Loose Packing Simulation Model and Approximation Formula for Packing Density Shuji Yamada, 1 Jinko Kanno 2 an

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

研究成果報告書

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

JAXA-SP indd

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University 1) 2) 3)

i

30 (Electrical Engineering I) () LED IC 1. LED, IC D () 2 2 LED 6 4 ANDORNOTEXOR : : () () () () () 1 LED, IC 2 LED, IC LED, I

untitled

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Study on Heat Transfer and Flow Characteristics of a Bank of Tubes with Tube-to-Baffle Leakage Z 29 < Z < 55 R 0.4 < R < 0.75 RANS This study investig

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

55_1-4_特集4部_2-2.qxd

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

kokyuroku.dvi

Study course / Research place – offer Saitama (Ph.D Sandwich)

main.dvi

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

TG TG TG ( ) 27 TG TG TG TG II ,4,5 29

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

untitled

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

untitled

I (linear transformation) (matrix) (vector) (column

program_japanese

14 2 5

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

MUFFIN3

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

(C) 1. () () y(θ) = sin(θ): sin, log () y = e x : e() A = B T : T () () t =1.0[s]: () 2. (SI) [] () () 10[s] (10(sec) ) () (SI) (D) () ( )

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

main.dvi

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

2009 4

charpter0.PDF

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

平成26年度 学生要覧

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

A Web Web , , ,160 5,142

(Seminar) B ( ) I

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6


Z...QXD (Page 1)

main.dvi

ZEMAX Nagata DLL Volume-CAD c Copyright by RIKEN All Rights Reserved : : ( )

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

< F2D E8AEE967B95FB906A8DC58F492E6A7464>

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Transcription:

CFDEM DEM DEM(MPI) LIGGGHTS CFD CFD

5) 5) 5)

11) 10) β D n = βd (1) D n β D 10) 10) β = 0.2 0.5 β β β = 0.2 0.5 β = 0.2 β = 0.5

35 30 25 ( ) 20 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 β (-) β β 1) Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings, Chemical Engineering Science, 63, (2008), 5728. 2) Goniva, C., Kloss, C., Deen, N.G., Kuipers, J.A.M., Pirker, S.Influence of rolling friction modelling on single spout fluidized bed simulations, Particuology, 10, 5, (2012). 3) Weller, H. G., Tabor, G., Jasak, H., Fureby, C.A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics, 12(6), (1998), 620. 4) Kloss, C., Goniva, C., Hager, A., Amberger, S., Stefan Pirker, S.Models, algorithms and validation for opensource DEM and CFD-DEM, Progress in Computational Fluid Dynamics, An Int. J. 12, (2012), 140. 5) Feng, Y. Q., Yu, A. B.Assessment of model formulations in the discrete particle Simulation of gas-solid flow, Industrial and Engineering Chemistry Research, 43, (2004), 8378. 6) Cleary, P.W.Industrial particle flow modeling using discrete element method, Eng. Comput., 26, 6 (2009), 698. 7) Lillie, C., Wriggers, P.Three-dimensional modeling of discrete particles by superellipsoids, Proc. Appl. Math. Mech., 6 (2006), 101. 8) Zhao, D., Nezami, E. G., Hashash, Y. M. A. Three-dimensional discrete element simulation for granular materials., Eng. Comput. Int. J. Comput. Aided Eng. Softw., 23, 7 (2006), 749. 9) Bierwisch, C., Kübler, R., Kleer, G., Moseler, M.Modelling of contact regimes in wire sawing with dissipative particle dynamics, Phil. Trans. R. Soc. A, 369 (2011), 2422. 10) 10 (2011), 43. 11) 59A (2013), 208.

( ( ( (Discrete) v d x F( x 3 ) 1 2 x x d v d u d x d v d 1 12,2017

pbesti gbest v i1 wvi r1 c1( pbesti xi ) r c ( gbest x ) 2 2 x x v i1 i i1 x i x i1 xi xi i r 0.5 r 0.5 E A exp T Ti 1 T i 1 x1x 2 f ( x) min 6.931 x3x4 12 x 60 i 1,2,3,4 i x1, x2, x3, x4 16,19,43,49 19,16,43,49 16,19,49,43 19,16,43,49 1) Sandgren, E., Nonliear Integer and Discrete Programming in Mechanical Design Optimization, ASME/J. of Mechanical Design, Vol.112, (1990), pp.223-229. 2 7 12,2017

FluentANSYS HyperStudy Altair 2 Fluent Fluent HyperStudy Fluent HyperStudy 1 Gambit Fluent HyperMesh HyperStudy 1. 2 HyperMesh 2 3 1000 3 500mm 8 12

2. HyperStudy 9 3 1000mm 500mm 125mm 4 1000mm ARSM Adaptive Response Surface Method ARSM 4 1 ARSM 5 ARSM 998.6mm 12.188Pa 5. ARSM 500mm 125mm 3. Altair HyperStudy 4. 12

12

0.687 C 24(1 0.15Re ) / Re Re 1000 D 0.44 Re 1000

SSB 3) Q=FV [Nm/s] =FV [Watt] FLUX MARC F V 3 4 Q 3 R 4000 GLUE F V Q 12 12

Q Q =FV Watt H p H=RH0.01[W/( 2 K)] H=1.0[W/( 2 K)] 8 RH H 4) 1), 405 2016 p124-128, NS-SSB 2),Vol.6 2015,p28-35, NS-SSB 3),2015,p465-466,(SSB) 4),2009,p17 13 12

u J ( Wdy T ds) x 1 J 2-1 J A u q W1 i ) x j 1 ij x1 i ( da 12

2-2 MARC 2-3 2-4 J 2-5 J K E Bb (3 =1.9) (3) 12

1) 20 2m 2m 16 12

1000 900 800 mm/sec 700 600 500 400 300 200 100 0 0 0.5 1 1.5 2 2.5 3 sec 1.6m 6.6m 2.3m 0.3m 0.9m 1) Abaqus 6.14 17 12

MATLAB Simulink - etc etc x =u y=x+c Qin T Qout Text Qin [W] 5000 Tgoal [] 60 Text [] 20 rho [kg/l] 1 Cp [J/kgK] 4217 V [L] 5 A [m 2 ] 2 T0 [] 20 s Alpha(s) Qout dq Q T [W/m 2 K] =-0.0875s 2 + 7.875s + 23.75 [W] =AAlpha(s)(T-Text) =Qin-Qout Tgoal [] = dqdt+t0rhocpv [] =Q/(rhoCpV) 18 12

-2 Simulink - Heat Model Heat Model Level2 MATLAB S-Function API *1 Simulink MATLAB Simulink MATLAB MATLAB MATLAB *1 Application Program Interface: Level2 MATLAB S-Function Simulink Level2 MATLAB S-Function % function HeatModel( block ) block.regblockmethod('initializeconditions', @InitConditions); % block.regblockmethod('outputs', @Output); % block.regblockmethod('derivatives', @Derivative); % end % function InitConditions(block) % Q Q=T0*rho*Cp*V; block.contstates.data=q; end % function Derivative (block) % dq Alpha=@(s) -0.0875*s^2 + 7.875*s + 23.75; Qin=block.InputPort(2).Data; s=block.inputport(1).data; Qout=A*Alpha(s)*(T-Text); dq=qin-qout; block.derivatives.data=dq; end % function Output (block) % Q T Q=block.ContStates.Data T=Q/(rho*Cp*V); block.outputport(1).data =T; end Level2 MATLAB S-Function - 180 300 [] Level2 MATLAB S-Function 19 12

Drag&Drop 1 2

2 0M1000 1000 7.86 10 9.175 10 0.722 1 V=0.0m/s 2 V=1.0m/s 5.0 10 A. 1 2 5.0 10 0.727 B. 1 2 TEL: 093-588-7233 E-mailnpd.cae-sales@eng.nssmc.com

22 12