2009 4

Size: px
Start display at page:

Download "2009 4"

Transcription

1 2009 4

2 LU QR Cholesky A: n n A : A = IEEE = : 1 / 36

3 A A κ(a) := A A 1. = κ(a) = Ax = b x := A 1 b Ay = b + b y := A 1 (b + b) x = y x x x κ(a) b b 2 / 36

4 IEEE 754 = 1 : u = κ(a) > u 1 1 = = = 3 / 36

5 Notation A = (a ij ), C = (c ij ) R n n A A A = ( a ij ) A C (i, j) a ij c ij notation 4 / 36

6 LU A R n n P A LU P R n n : L R n n : U R n n : Ax = b P Ax = P b LU x = b Ly = P b U x = y LU 5 / 36

7 P A LU LU P A LU P A LU A < ε = (Matlab demo.) P A LU O(u) L U O(u) A 6 / 36

8 LU P A = LÛ A Û κ(a) κ(û) (1) Û 1 X U κ(a) κ(ax U ) κ(ax U ) u 1 ÛX U I < 1 (1) = A Crout 7 / 36

9 A X U X L AX U I < 1 (2) AX U X L I < 1 (3) L X L = A X U 8 / 36

10 κ(û) u 1 X := Û 1 X 1 = fl( X) = X 1 = Û 1 + ij u Û 1 ij ÛX 1 I < 1 ÛX 1 I = Û(Û 1 + ) I = Û Û u κ(û) > 1 = Û 1 9 / 36

11 X 1 Û A Û = κ(ûx 1) = O(u) κ(û), u = = P AX U = LÛX 1X 2... X k L L P AX U L < ε tol 10 / 36

12 LU A R n n P A LU P R n n : L R n n : U R n n : ε tol < 1 L 1 P AU 1 I ε tol P AU 1 L ε tol (R A 1 RA I ε tol ) 11 / 36

13 = = = 12 / 36

14 x, y F n x T y = n i=1 x i y i 13 / 36

15 1965 Møller (BIT) 1970 Nickel (ZAMM) (Kahan-Babuška s algorithm) 1971 Malcolm (Comm. ACM) 1972 Pichat (Numer. Math.) 1973 Kie lbasziński (Math. Stos.) 1974 Neumaier (ZAMM) (improved Kahan-Babuška s algorithm) 1977 Bohlender (IEEE Trans. Comput.) 1982 Leuprecht, Oberaigner (Computing) 1986 Kulisch, Miranker (SIAM Review, originally 1970 s in Karlsruhe) 1991 Priest (Proc. IEEE Symposium) 1999 Anderson (SIAM J. Sci. Comput.) 2002 Li et al. (ACM Trans. Math. Softw., XBLAS) Demmel, Hida (SIAM J. Sci. Comput) 14 / 36

16 F: u: IEEE 754 u = A 1:p := p i=1 A i B 1:q := q i=1 B i A i, B i F n n A i u A i 1, B i u B i 1 15 / 36

17 C 1:L = [A 1:p B 1:q ] L K, C 1:L := L i=1 C i, C i F n n c 1, c 2 : O(1) C 1:l A 1:p B 1:q c 1 u L A 1:p B 1:q + c 2 u K A 1:p B 1:q. A 1:p B 1:q K L K L 16 / 36

18 Rump [unpublished, 1980 s], [JJIAM, to appear] function R = AccInv(A,m) % right inverse version n = dim(a); I = eye(n); R = A \ I; % pure fl-pt (Solve AR = I for R) for k=2:m C = AccMM(A,R,1); % accurate dot product T = C \ I; % pure fl-pt (Solve CT = I for T) R = AccMM(R,T,k+1); % accurate dot product end 17 / 36

19 LU [ ] 0: X 1:0 = I k = 1 1: B k [A X 1:k 1 ] 1 k [ / ] 2: B k LU P k B k L k U k 3: U 1 k T k 4: X 1:k [X 1:k 1 T k ] k k [ / ] 5: U k T k ε tol u 1 L := L k, X U := X 1:k P := P k 6: k k / 36

20 QR [ ] 0: X 1:0 = I k = 1 1: B k [A X 1:k 1 ] 1 k [ / ] 2: B k QR B k Q k R k 3: R 1 k T k 4: X 1:k [X 1:k 1 T k ] k k [ / ] 5: R k T k ε tol u 1 Q := Q k, X R := X 1:k 6: k k / 36

21 20 / 36

22 Proposition 1. A F n n X 1:k LU QR n n k 1 κ(ax 1:k ) = 1 + O(u k ) κ(a) (4) Remark 1. A = m i=1 A i, A i F n n 21 / 36

23 RX 1:k I = AX 1:k Q T < 1 k log[εtol κ(a) 1 ] k =. log u κ(a) k R k T k < ε tol u 1 (5) (5) = AX 1:k Q T < ε tol 22 / 36

24 BLAS LAPACK 4. 2 Level-3 BLAS 23 / 36

25 LU QR u = Rump INTLAB randmat(n,cnd) n = 100 cnd = A F κ(a) / 36

26 Table 1: Rump n = 100 and κ(a) LU k κ(u k ) κ(t k ) κ(ax 1:k ) u k κ(a) < < 1 25 / 36

27 Table 2: Rump n = 100 and κ(a) QR k κ(r k ) κ(t k ) κ(ax 1:k ) u k κ(a) < < 1 26 / 36

28 (1): 1. A T LU Crout A P A T X U L XU T AP L T 2. ỹ = [XU T b]1 m 3. L T z = ỹ z 4. x = P z 27 / 36

29 (1): ( )Hilbert H n H n n 21 n = 15 (κ(h 15 ) ) b = H 15 e F 15 e := (1,..., 1) T H 15 x = b H15 1 b = e = (1,..., 1)T (Matlab demo) 28 / 36

30 (2): Rump Rump randmat n = b = (1,..., 1) T ε tol = 10 6 GMP 29 / 36

31 function [p,rel_err] = test_gmp_lin(a,b,xt,tol) % xt: given exact solution of Ax = b % tol: tolerance for relative error d = 53; norm_xt = norm(double(xt)); while 1 xv = gmp_lin(a,b,d); % solve Ax=b using GMP % normwise relative error rel_err = norm(double(xt-xv))/norm_xt; if rel_err < tol, break, end d = 2*d; % d = 53, 106, 212,... end 30 / 36

32 Table 3: Rump n = 500 ε tol = 10 6 GMP-based GEPP κ(a) ε 1 t 1 k ε 2 t 2 d/ / 36

33 (2): Higham in ASNA LU U ii det(a) det(p T LU) = det(p ) det(u). 32 / 36

34 X L, X U : L, U B := X L P AX U det(b) = det(p ) det(a) det(x U ) det(a) = det(p ) det(b)/ det(x U ) (6) = B:, det(b) 1 = Gershgorin B = det(b) = (6) det(a) 33 / 36

35 A L U LU = B = X L P AX U = Gershgorin (Matlab demo) 34 / 36

36 Cholesky LDL T 35 / 36

37 36 / 36

II

II II 2016 7 21 computer-assisted proof 1 / 64 1. 2. 3. Siegfried M. Rump : [1] I,, 14:3 (2004), pp. 214 223. [2] II,, 14:4 (2004), pp. 346 359. 2 / 64 Risch 18 3 / 64 M n = 2 n 1 (n = 1, 2,... ) 2 2 1 1

More information

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75 Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000

More information

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1 ( ) 60,000 120,000 1,800,000 120,000 100,000 60,000 60,000 120,000 10,000,000 120,000 120,000 120,000 120,000 1,500,000 171,209,703 5,000,000 1,000,000 200,000 10,000,000 5,000,000 4,000,000 5,000,000

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Ÿ ( ) Ÿ 7,488,161,218 7,396,414,506 91,708,605 38,107 4,376,047 2,037,557,517 1,000,000 i 200,000,000 1,697,600, ,316.63fl 306,200,000 14

Ÿ ( ) Ÿ 7,488,161,218 7,396,414,506 91,708,605 38,107 4,376,047 2,037,557,517 1,000,000 i 200,000,000 1,697,600, ,316.63fl 306,200,000 14 Ÿ ( ) (Ÿ ) Ÿ J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 17 18. 3.30 24,222,550,856 8,088,715,093 16,133,835,763 14,673,176,237 (400,000) 1,265,253,000 201,000,000 1,000,000 200,000,000

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

( š ) š 13,448 1,243,000 1,249,050 1,243,000 1,243,000 1,249,050 1,249, , , ,885

( š ) š 13,448 1,243,000 1,249,050 1,243,000 1,243,000 1,249,050 1,249, , , ,885 ( š ) 7,000,000 191 191 6,697,131 5,845,828 653,450 197,853 4,787,707 577,127 4,000,000 146,580 146,580 64,000 100,000 500,000 120,000 60,000 60,000 60,000 60,000 60,000 200,000 150,000 60,000 60,000 100,000

More information

š ( š ) 7,930,123,759 7,783,750, ,887, ,887 3,800,369 2,504,646,039 i 200,000,000 1,697,600, ,316.63fl 306,200,

š ( š ) 7,930,123,759 7,783,750, ,887, ,887 3,800,369 2,504,646,039 i 200,000,000 1,697,600, ,316.63fl 306,200, š ( š ) (Ÿ ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 907,440,279 16 17. 3.30 23,805,381,307 7,603,591,483 16,201,789,824 15,716,666,214 (400,000) 1,205,390,461 200,000,000 200,000,000

More information

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000 ( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000

More information

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2 š ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 13 14. 3.29 23,586,164,307 6,369,173,468 17,216,990,839 17,557,554,780 (352,062) 1,095,615,450 11,297,761,775 8,547,169,269

More information

untitled

untitled ( œ ) œ 2,000,000 20. 4. 1 25. 3.27 44,886,350 39,933,174 4,953,176 9,393,543 4,953,012 153,012 4,800,000 164 164 4,001,324 2,899,583 254,074 847,667 5,392,219 584,884 7,335 4,800,000 153,012 4,800,000

More information

( ) 2,335,305 5,273,357 2,428, , , , , , , ,758,734 12,834,856 15,923,878 14,404,867 3,427,064 1,287

( ) 2,335,305 5,273,357 2,428, , , , , , , ,758,734 12,834,856 15,923,878 14,404,867 3,427,064 1,287 ( ) 500,000 500,000 320,000 300,000 1,000,000 1,140,000 1,500,000 560,000 640,000 400,000 240,000 600,000 400,000 780,000 300,000 300,000 1,500,000 260,000 420,000 400,000 400,000 300,000 840,000 1,500,000

More information

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G 211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double

More information

ap0 ap1 ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 aq0 aq1 aq2 aq3 aq4 aq5 aq6 aq7 aq8 aq9 aw0 aw1 aw2 aw3 aw4 aw5 aw6 aw7 aw8 aw9 ae0 ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ar0 ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 at0

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

untitled

untitled Ÿ Ÿ ( œ ) 120,000 60,000 120,000 120,000 80,000 72,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 240,000 1,150,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000

More information

並列計算の数理とアルゴリズム サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

並列計算の数理とアルゴリズム サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 初版 1 刷発行時のものです. 並列計算の数理とアルゴリズム サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/080711 このサンプルページの内容は, 初版 1 刷発行時のものです. Calcul scientifique parallèle by Frédéric Magoulès and François-Xavier

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000 ( ) 6,364 6,364 8,884,908 6,602,454 218,680 461,163 1,602,611 2,726,746 685,048 2,022,867 642,140 1,380,727 18,831 290,000 240,000 50 20. 3.31 11,975,755 1,215,755 10,760,000 11,258,918 (68) 160,000 500,000

More information

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , ,

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , , š ( š ) 60,000 240,000 120,000 60,000 120,000 360,000 72,000 1,128,000 56,380,000 14. 2.20 35,492,337 17,401,486 18,090,851 32,141,906 11,070,000 3,570,000 7,500,000 7,020,000 7,020,000 851 851 9,778,644

More information

untitled

untitled 24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012

More information

Otsuma Nakano Senior High School Spring Seminar Mathematics B

Otsuma Nakano Senior High School Spring Seminar Mathematics B Otsuma Nakano Senior High School Spring Seminar Mathematics B 2 a d a n = a + (n 1)d 1 2 ( ) {( ) + ( )} = n 2 {2a + (n 1)d} a r a n = ar n 1 a { r ( ) 1 } r 1 = a { 1 r ( )} 1 r (r 1) n 1 = n k=1 n k

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

untitled

untitled š ( ) 300,000 180,000 100,000 120,000 60,000 120,000 240,000 120,000 170,000 240,000 100,000 99,000 120,000 72,000 100,000 450,000 72,000 60,000 100,000 100,000 60,000 60,000 100,000 200,000 60,000 124,000

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74 Ÿ ( ) œ 1,000,000 120,000 1,000,000 1,000,000 120,000 108,000 60,000 120,000 120,000 60,000 240,000 120,000 390,000 1,000,000 56,380,000 15. 2.13 36,350,605 3,350,431 33,000,174 20,847,460 6,910,000 2,910,000

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

橡Taro11-報告書0.PDF

橡Taro11-報告書0.PDF Research Center RC 2001 5-1- RC RC NHK -2- -3- 00/12/16 RC 01/01/07 RC 01/01/21 1 13 01/02/11 2 9 01/02/10 01/02/14 01/02/19 01/02/25 3 7 01/03/10 4 8 01/03/23 5 8 01/04/29 2001/01/07-4- -5- RC 1990 RC

More information

untitled

untitled š ( œ ) (Ÿ ) lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll J ¾ 21 22. 3.30 22,647,811,214 9,135,289,695 13,512,521,519 14,858,210,604 (438,585) 1,278,866,000 208,685,290 485,290 8,000,000

More information

8 8 0

8 8 0 ,07,,08, 8 8 0 7 8 7 8 0 0 km 7 80. 78. 00 0 8 70 8 0 8 0 8 7 8 0 0 7 0 0 7 8 0 00 0 0 7 8 7 0 0 8 0 8 7 7 7 0 j 8 80 j 7 8 8 0 0 0 8 8 8 7 0 7 7 0 8 7 7 8 7 7 80 77 7 0 0 0 7 7 0 0 0 7 0 7 8 0 8 8 7

More information

untitled

untitled Ÿ ( œ ) ( ) lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll J ¾ 25 26. 3.28 19,834,572,598 5,567,519,745 14,267,052,853 13,701,344,859 (453,473) 1,293,339,800 306,707,318 306,707,318 9,096,921,367

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

untitled

untitled š ( ) œ 1 1,128,321 24,000 3,347 359,874 741,100 5,519,882 1,863,153 10,000 10,000 10,000 36,729 3,600,000 107,000 33,749,250 24. 5.29 1,518,131 18,131 1,500,000 1,511,729 1,500,000 1,500,000 769,268 100,000

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a = 3 4 MATLAB 3 4. A, B R 3 3 2 3 4 5 6 7 8 9, B = mat_a, mat_b >> mat_a = [-, -2, -3; -4, -5, -6; -7, -8, -9] 9 8 7 6 5 4 3 2 mat_a = - -2-3 -4-5 -6-7 -8-9 >> mat_b = [-9, -8, -7; -6, -5, -4; -3, -2, -]

More information

官報(号外第196号)

官報(号外第196号) ( ) ( ) š J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 12 13. 3.30 23,850,358,060 7,943,090,274 15,907,267,786 17,481,184,592 (354,006) 1,120,988,000 4,350,000 100,000 930,000 3,320,000

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

10 Vol.4 No October Contents

10 Vol.4 No October Contents Vol.4 No.7 2007 October 10 Topics 02 Close up Topics 01 10 Vol.4 No.7 2007 October Contents 06 10 12 14 16 03 03 NEW Symposium 10 È EML4 ALK EML4-ALK È 04 October 2007 Event 05 Close up 06 October 2007

More information

( ) šœ ,181,685 41,685 41, ,000 6,700, ,000 1,280, ,000 1,277, , ,000 1,359, , ,320, ,

( ) šœ ,181,685 41,685 41, ,000 6,700, ,000 1,280, ,000 1,277, , ,000 1,359, , ,320, , š ( ) 20. 3.27 3,703,851 403,851 3,300,000 3,300,000 3,300,000 3,300,000 3,300,000 3,300,000 11 3,300,000 20,799,250 20. 3.27 4,362,034 32,034 4,330,000 4,344,614 4,330,000 4,330,000 1,182,723 984,328

More information

ロシア語便覧 1

ロシア語便覧 1 - -È - - -ÚÂÎ Û Ë±ÚÂÎ, ÔËÒ ±ÚÂÎ - apple ÒÂÍappleÂÚ ±apple, Ë ÎËÓÚÂ±Í apple flì ±apple, Ù apple ±Î ÒÚÓ±Î, ÒÚÓÎ ± αÒ, ÎÂ±Ò ; ÎÂÒ ±, ÎÂÒÓ± ÁÛ±, ÁÛ± ; ÁÛ±, ÁÛ Ó± -, -Ë ÒÚÓÎ ±, ÊÛappleÌ ±Î, ÏÛÁ±Ë, ÒÎÓ appleë±

More information

inyectiva.dvi

inyectiva.dvi ÙÒ ÓÒ ÁÒÝ Ø Ú Ó Ö Ý Ø Ú Ý Ø Ú ÒÚ Ö ÂÙÐ Ó Ö ½ Ñ ÝÓ ¾¼½ ÁÒÝ Ø Ú Ó Ö Ý Ø Ú Ý Ý Ø Ú ÁÒÝ Ø Ú Ò Ò ½ ÙÒ Ò ÁÒÝ Ø Ú µ ÍÒ ÙÒ Ò f ÒÝ Ø Ú Ó ÙÒ Ú Ð ÒØ Ð Ñ ÒØÓ Ø ÒØÓ Ð ÓÑ Ò Ó Ø Ò Ò Ñ Ò Ø ÒØ Ö f : A B ÒÝ Ø Ú x 1,x 2

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

untitled

untitled š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000

More information

µ ± µµµ µµ µ µ µµlµ µµµ m ± ƒ µ µµ µyµ µµm ± µ Œ ~µ y µµ µµµoµy µµ m ± ~ µµij µµµo{µ m ± µ f µµµµµµµ{ µm µ { Œ µµµ l µ µr µž l ph µ pj µµµµµµ µµµ µd µ

µ ± µµµ µµ µ µ µµlµ µµµ m ± ƒ µ µµ µyµ µµm ± µ Œ ~µ y µµ µµµoµy µµ m ± ~ µµij µµµo{µ m ± µ f µµµµµµµ{ µm µ { Œ µµµ l µ µr µž l ph µ pj µµµµµµ µµµ µd µ µ p µ p µ p µ p ÎÎm Ö ŒŸijÖ ŒÏÖÖ{ ÖdÕÍ {m ÓÙf møõö Ö ÔÕij ÚÖÔØÍeÖ ÍodÝâäà ÖÍ eíöüâüââáúôíöàãöôõö Ö Ú ÕÕm Öm Ö ØÕÒØÔÍ höö ØÕÖ leöi ÓÖÒ ÕØÍ m Ö Œ~e Öl ÓÕÓÙÙÒÍm Ö ÙiÚÕÒÙÕØÍÖ ÔÙØÔÒÒ ÙÖ ÕÔŸ ÖÍŸŸ Ÿ ÖÓÒÕÍŽÍŽ

More information

sakigake2.dvi

sakigake2.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 2.1 Lorenz 3 4 5 6 1 2 2.1 Lorenz E. Lorenz R 3 ẋ = σx + σy ẏ = ρx y xz ż = βz + xy Lorenz σ, ρ, β Lorenz (σ, ρ, β) =(10, 28, 8/3)

More information

Microsoft Word - 印刷原稿富山産業政策集積2.doc

Microsoft Word - 印刷原稿富山産業政策集積2.doc 1 1 2 46 48 50 3 2 5 50 55 50 2 3 50 4 H I= JK# $6 &' () *+ LM NM O6 PQ F >R BS 9TC U: F> GB S 9T UU : F> >B S 9V W: W BB BS 9VF W : # $% & '( )* +, / # $% & '( )* +, / # $% & '( )* +, / # $% & '( )* +,

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

第55期ご報告

第55期ご報告 A B C D A B C A B C D A B C D A BA CB ñññ ññ ñ A B C A B A B C D À À À À À À À À À À À À News flfl Segment Information P Q R O G L K H IJ C ABE D M N F A B C D E F G H I J K L M N O P Q R Stock

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

24 21 21115025 i 1 1 2 5 2.1.................................. 6 2.1.1........................... 6 2.1.2........................... 7 2.2...................................... 8 2.3............................

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

目論見書

目論見書 Fidelity Japan Growth Fund 1 1 2 3 4 5 6 7 2 3 A B AB CDEFG AB C D 4 (3) 2002 2 1. 5 2001 2 28 7 2001

More information

untitled

untitled I....1 1... 1 2... 1 3... 1 4... 2 II....3 1... 3 2... 7 (1)... 7 (2)... 8 (3)... 9 (4)...10...11...13 1... 13 (1)...13 (2)...13 (3)...14 2... 15 (1)...15 (2)...15 1)...15 2)...16 3)...16 (3)...16 (4)...17

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

平成 26 年度埼玉県民生委員 児童委員協議会事業計画書 1. 運営方針 (1) ŸŸ Ÿ Ÿ ÓÙ p Ö yôõžö ÔÕÎ ÏÖ i ÕÒÙÍ Ú Ö ÔÙÕØÍ ÓiÓ ÖÓÙÖ ÔÕ Ö Ö ÙiØÍ (2) ä e Ó ÖÔÕÖijÖ nó ÔÙÙÙÒÍ Ö Ö Ö ÚÔÔØÙÖÖØÖ

平成 26 年度埼玉県民生委員 児童委員協議会事業計画書 1. 運営方針 (1) ŸŸ Ÿ Ÿ ÓÙ p Ö yôõžö ÔÕÎ ÏÖ i ÕÒÙÍ Ú Ö ÔÙÕØÍ ÓiÓ ÖÓÙÖ ÔÕ Ö Ö ÙiØÍ (2) ä e Ó ÖÔÕÖijÖ nó ÔÙÙÙÒÍ Ö Ö Ö ÚÔÔØÙÖÖØÖ 平成 26 年度埼玉県民生委員 児童委員協議会事業計画書 1. 運営方針 (1) ŸŸ Ÿ Ÿ ÓÙ p Ö yôõžö ÔÕÎ ÏÖ i ÕÒÙÍ Ú Ö ÔÙÕØÍ ÓiÓ ÖÓÙÖ ÔÕ Ö Ö ÙiØÍ (2) ä e Ó ÖÔÕÖijÖ nó ÔÙÙÙÒÍ Ö Ö Ö ÚÔÔØÙÖÖØÖ Ö dú ÙÍ (3) Öd ÖdÕÍ Ö Ö }ä löôõöí ä e Ö Ö ä e ÖÖÕÖij

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3) 72 12 2016 pp. 777 782 777 * 43.60.Pt; 43.38.Md; 43.60.Sx 1. 1 2 [1 8] Flexible acoustic interface based on 3D sound reproduction. Yosuke Tatekura (Shizuoka University, Hamamatsu, 432 8561) 2. 2.1 3 M

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

.T.C.Y._.E..

.T.C.Y._.E.. 25 No.33 C O N T E N T S REVIEW 1 2 5 4 3 6 7 8 9 1 11 1, 1, 7,5 75 916,95 (121) 756,67 (15) 718,89 (13) 91,496 (169) 54,2 (179) 3,243 (75) 727,333 (129) 564,47 (112) 55,458 (11) 6,68,953 (18) 5,624,957

More information