Similar documents

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

LLG-R8.Nisus.pdf

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

Gmech08.dvi

Gmech08.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

重力方向に基づくコントローラの向き決定方法

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


gr09.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

arxiv: v1(astro-ph.co)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

本文/目次(裏白)

TOP URL 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

TOP URL 1


TOP URL 1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

all.dvi

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

QMII_10.dvi

LNSC2010_HK.dvi

untitled

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

4‐E ) キュリー温度を利用した消磁:熱消磁

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

A

untitled

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Untitled

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

85 4

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

125-1.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

all.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

2000年度『数学展望 I』講義録

inflation.key


5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

III,..

振動工学に基礎

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Einstein ( ) YITP

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

II 2 II

吸収分光.PDF

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

量子力学 問題

05Mar2001_tune.dvi


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

chap9.dvi

Note.tex 2008/09/19( )

Untitled

30

H.Haken Synergetics 2nd (1978)

抄録/抄録1    (1)V

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Transcription:

C10-075 26 2 12 1

1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6 2.3................... 7 2.4............................. 7 3 8 3.1............................. 8 3.2........................ 8 3.2.1............................. 9 3.2.2........................... 9 3.2.3................ 11 3.2.4................... 11 3.2.5.................... 11 4 13 4.1 Runge-Kutta............................. 13 4.2.......................... 14 4.3 γ................... 15 4.4................ 18 4.4.1......................... 18 4.4.2................. 19 5 21 5.1............................. 21 5.2............................ 21 5.3............................. 22 5.4................ 22 6 23 6.1................................. 23 6.2............................. 23 6.3................................. 24 2

6.4.............................. 30 6.4.1 I.......................... 30 6.4.2 II.......................... 31 6.4.3 III......................... 32 7 33 3

1 1.1 137 138 38 4 90 1: ([6] ) 4

1.2 1000 100 138 1.3 ( ) 5

2 2.1 (Albert Einstein) 1915 1922 (Aleksandr Friedmann) (Georges Lemaitre) 1927 2.2 (Edwin Hubble) 1929 6

2.3 (George Gamow) 1948 1965 (Arno Penzias) (Robert Wilson) 2.4 (Seul Perlmutter) (Brian Schmidt) WMAP 73 23 4 7

3 3.1 (1) G µν + Λg µν = 8πG c 4 T µν (1) G µν R µν R G µν = R µν 1 2 Rg µν Λ g µν G c T µν Λ T µν 3.2 8

3.2.1 2 100 0 3.2.2 K 2 3 3 3 9

2: ds 2 (r, θ, ϕ) (2) ds 2 = dr2 1 Kr 2 + r2 ( dθ 2 + sin 2 θdϕ 2) (2) K r r = 2πr 4πr 2 r 2 ( dθ 2 + sin 2 θdϕ 2) (2 ) θ z ϕ x 3 3: ([8] ) 10

3.2.3 3 4 (2) ds 2 (3) ds 2 = c 2 dt 2 + a 2 dr 2 (t)[ 1 Kr + ( 2 r2 dθ 2 + sin 2 θdϕ 2) ] (3) (Robertson-Walker) t c a(t) 3.2.4 T µν T µν T µν = ρc 2 0 0 0 0 p 0 0 0 0 p 0 0 0 0 p ρc 2 p (4) 3.2.5 (5) (6) (5) 00 (6) 11

2ä a + { (ä ) 2 + k a a 2 c2 = 8πG 3 ρ + Λ 3 c2 (5) (ȧ a ) 2 + k a 2 c2} = 8πG p c 2 + Λc2 (6) (5) (5) Λ = 0 (7) (8) µ T µν = 0 (7) ρ = 3ȧ (ρ + p ) a c 2 p ρ (9) (10) (8) p = p (ρ) (9) p = (γ 1) ρ (10) γ (5) (8) (10) a(t) 12

4 k k k 4.1 Runge-Kutta a Runge-Kutta Runge-Kutta 4 4 Runge-Kutta Runge-Kutta (x n, y n ) x n+1 = x + h (x n+1, y n+1 ) 4 Runge-Kutta (11) (12) y n+1 = y n + h 6 (k 1 + 2k 2 + 2k 3 + k 4 ) (11) k 1 = f (x n, y n ) k 2 = f ( x n + h, y 2 n + 1k ) 2 1 k 3 = f ( x n + h 2, y n + 1k ) 2 2 k 4 = f (x n + h, y n + k 3 ) (12) (11) y n+1 y n x x h 4 (12) 4 k 1 x n k 2 k 1 x n + h x n + h 2 k 3 k 2 k 2 y k 4 k 3 y 13

4 4: ( )([7] ) 4.2 Runge-Kutta 3 (5) k +1 0 1 (5) (8) (10) (10) γ γ = 4/3 Λ = 0 G = c = 1 a(t) 5 14

5: t = 0 k a(t) 3 2 k = 1 k = 0 k = 1 4.3 γ (10) γ 5 γ = 4/3 γ = 1 p = 0 k = 1, 0, +1 γ = 4/3 6 8 15

6: k = 1 (γ = 1, γ = 4/3 ) 7: k = 0 (γ = 1, γ = 4/3 ) 16

8: k = +1 (γ = 1, γ = 4/3 ) γ = 1 k 9 9: γ = 1 γ = 4/3 k 17

4.4 t = 0 t = 0 4.4.1 (Vesto Melvin Slipher) 1910 z λ s λ 0 (13) z = λ 0 λ s λ s (13) 18 v c v c z (14) z = v c (14) (14) z d d v (15) v = H 0 d (15) 18

H 0 t H(t) H 0 = H (0) 4.4.2 t v d a v = ȧ d = a H 0 (16) H 0 = ȧ (16) a H 0 a H 0 t = 0 H 0 H 0 = 0.045 t = 0 10 11 10: 19

11: H 0 (15) 18 H 70 11 20

5 5.1 k = 0 Λ = 0 ρ c = 3H2 8πG N (17) Ω tot ρ 0 ρ c Ω tot = ρ 0 ρ c (18) (18) (16) (5) k a 2 H 2 0 = Ω tot 1 + Λ 3H 2 0 (19) 5.2 Λ Ω Λ (19) Ω Λ 21

Ω Λ = Λ 3H 2 0 (19) Ω tot + Ω Λ = 1 + k a 2 H0 2 (20) (21) 5.3 3 k Ω k (21) k Ω k Ω k = k a 2 H0 2 (22) 5.4 Ω tot Ω Λ Ω k (5) Ω tot + Ω Λ + Ω k = 1 (23) a 22

6 6.1 Ω tot + Ω Λ + Ω k = 1 3 Java GUI Swing Java Java JFreeChart [9] JFreeChart Swing 6.2 12 Gakushu1 Gakushu2 Gakushu3 prefclear 23

12: 6.3 13 24

13: 1. 25

14: 2. 15: 3. 26

I Ω Λ = 0 Ω k II Ω k = 0 Ω tot 0.1 1.0 0.1 10 III 10 III 1 16: 1 Ω tot Ω Λ 17: Ω tot 27

18: Ω Λ 4. t 0 0 19: 5. I III 6. III 7. Ω tot + Ω Λ + Ω k = 1 28

8. 0 9. t a t H 29

6.4 6.4.1 I I k I 20 20: I Ω k Ω k 0 30

6.4.2 II Ω k = 0.0 II Ω k = 0.0 10 Ω tot 1.0 0.1 10 II Ω k = 0.0 21 21: II 31

6.4.3 III III Planck Ω tot = 0.25 Ω Λ = 0.75 Ω k = 0.0 138 III 3 III t = 0 22 22: III(Ω tot = 0.25, Ω Λ = 0.75, Ω k = 0.0) 138 32

7 33

[1] p165-p.194 ( 1996 ) [2] p.200-p.201 ( 2010 ) [3] ( 2008 ) [4] I ( 2008 ) [5] II ( 2007 ) [6] Timeline of the Universe http://map.gsfc.nasa.gov/media/060915/index.html [7] http://www.me.tokushima-u.ac.jp/ miw/wadai/ip3/06/10/10.html [8] http://homepage2.nifty.com/eman/relativity/flrw.html [9] JFreeChart http://www.jfree.org/jfreechart/ 34