54 10 hν hν ' Cd 2 CdS Y- 13 CdS ZnS PbS CdSe 35) 36) 20 TiO 2 V 2 O 5 Fe 2 O 3 37) CVD TiO 2 V 2 O ) UV 1 UV Ti 3 -O Ti 3 O 1 NO N 2

Similar documents
寄稿論文 規則性無機ナノ空間が創り出す新しい触媒能 | 東京化成工業

結晶性多孔体細孔を利用した物質合成

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

untitled

X線分析の進歩36 別刷

光学

Intercalation Compounds of Clays Chuzo K ATO and Kazuyuki K URODA Department of Applied Chemistry, School of Science and Engineering, Waseda Universit

物理予稿01-

物理化学I-第12回(13).ppt

36 th IChO : - 3 ( ) , G O O D L U C K final 1

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2

NOx触媒としてのCu-ZSM-5 中のCuイオンの配位構造と反応性

untitled

…h…L…–…†…fi…g1


PowerPoint プレゼンテーション


H1-H4

第122号(A4、E)(4C)/3 宇野ほか

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

温泉の化学 1

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ


1 2 2 (Dielecrics) Maxwell ( ) D H

RAA-05(201604)MRA対応製品ver6

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1) J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, "Landolt-BOrnstein Tables", New Series, Vol. 7, Springer, Heidelber

i

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

03J_sources.key

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

F. Hirata and P. Rossky, Chem. Phys. Lett83

28 Horizontal angle correction using straight line detection in an equirectangular image

untitled

CONTENTS Public relations brochure of Higashikawa February No.748 2

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 2

1).1-5) - 9 -

ナノ粒子のサイズ・形態制御と 構造敏感型触媒プロセスへの応用

untitled


Synthesis and Property of the Mn Doped Oxide Red Phosphors in the Calcium Aluminates Koji INOUE, Shinya IWATA and Shinobu HASHIMOTO Recently, the deve

/fiÁ1-1/‹Éfi¡ıæ„[’æ’¶

J. Mass Spectrom. Soc. Jpn.: 58(5), (2010)

4 1 Ampère 4 2 Ampere 31

2007 Vol.56 No.6 総説 丸山浩樹

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

000..\..

untitled

2006.Membranes31new.pdf

1

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

微粒子合成化学・講義


Precisely Designed Catalysts News Letter Vol. 5 May, 2016

FC EV FC EV R&D JFE JFE JFE 2


CuSO POINT S 2 Ni Sn Hg Cu Ag Zn 2 Cu Cu Cu OH 2 Cu NH CuSO 4 5H 2O Ag Ag 2O Ag 2CrO4 Zn ZnS ZnO 2+ Fe Fe OH 2 Fe 3+ Fe OH 3 2 Cu Cu OH 2 Ag Ag



00) îSìyçzï®äwÇÃäÓëb-1.pdf


2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

放射線化学, 92, 39 (2011)

KOMET KUB K2® 小径対応ヘッド交換式ドリル

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori


pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

untitled

IR0036_62-3.indb


カイラル結晶化ver3pp.dvi

プラズマCVDの化学反応工学

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Microsoft Word - ②(添付資料)家庭の夏期節電実態調査の結果について

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [


16_.....E...._.I.v2006

2_R_新技術説明会(佐々木)


1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

01-表紙.ai

Fig. 1 Hydrogen Uptake on Metal Supported Active Carbon Fig. 2 Temperature Programmed Desorption Spectra of Hydrogen on Ni Supported Active Carbon

第117号(A4、E)4C/3 湯浅ほか

3) F. M. McMillan : The Chain Straighteners. Fruitful Innovation the Discovery of Linear and Stereoregular Synthetic Polymers. The Macmillan Press, Lo

SPring8菅野印刷.PDF

kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm


149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :



Transcription:

9 Vol.21, No.2 (2004) 53 NOxCO 2 X 220 nm Si/Al 1-23) 24-42) 24-42)

54 10 hν hν ' 1 100 20 Cd 2 CdS Y- 13 CdS ZnS PbS CdSe 35) 36) 20 TiO 2 V 2 O 5 Fe 2 O 3 37) CVD TiO 2 V 2 O 5 24-30) UV 1 UV Ti 3 -O Ti 3 O 1 NO N 2 EXAFS CO 2 TiO 2 NO N 2 O 2 1 NO N 2 O 2 TiO 2 N 2 O 26-28) 2 Ti V Ti- TS-1 Ti-beta V- VS-1 UV Ti 3 -O 1 3 Ti Ti

11 Vol.21, No.2 2004 55 2 4 (I) XANES FT- EXAFS (a, A) Cu /ZSM-5, (b, B) Cu /Y- 3 38) Cu Ag Si/Al ZSM-5 EXAFS 4 UV-VIS 5 11,31) Cu 5 (I) (a, A) Cu /ZSM-5, (b, B) Cu /Y-, (c, C) Cu / Ag d 10 1 2 d 9 s 1 hν Cu ([Ar]3d 10 ) Cu * ([Ar]3d 9 4s 1 ) (1) hν' Ag ([Kr]4d 10 ) hν hν' Ag * ([Kr]4d 9 5s 1 ) (2) s d Cu Ag

56 12 a b c d 7 V Ti-HMS 6 (a) Ag /ZSM-5, (b) Ag /Y-zeolite, (c) Ag /SiO 2, (d) Cu /ZSM-5 NO ZSM-5 Cu Ag NOx N 2 O 2 6 Ag NOx NOx 32) Pr 3, Eu 3 40) NO 24-30) 220 270 nm 33,34) V 8 Cr 6 (a) Cr 6 /HMS (b) Cr 6 / 7

13 Vol.21, No.2 2004 57 9 Cr O NOx 41) 8 HMS HMS Cr O HMS 9 28,29) F 10 F F 10 39,42) 1-13) 11 X- 13 ZSM-5 5.5

58 14 11 a) b) 3) n, π * π, π * α - Norrish Type I β - Norrish Type II Norrish Type I 12 2- Type I / Type II Type I Type II Type II 22) Si/Al Si/A Si/Al H 12 2- Norrish Type I / II 9) Li Na Rb Cs 2,15) Rb Cs 13

15 Vol.21, No.2 2004 59 13 X- 15 n - 14 ZSM-5 2- Rb Cs 9,15) Li Na Li Na K Rb Cs 16 ZSM-5 2- C O IR ab initio n, π * π, π * Norrish Type II Type I 11,21,22) 14 ZSM-5 2-2- n- Li Cs C O IR

60 16 17 15 21,22) 16 ab initio 14 4,5) 17 18 23) 8,20) Nd 3 2 Nd 3 OH CH 3 Nd 3 Nd 3 Nd 3 perfluoromethylsulfonyl PMS Nd 3 18,19) ZSM-5 Turro

17 Vol.21, No.2 2004 61 18 ZSM-5 MCM-41 B 19 20 19 16,17) 20

62 18 1) P. V. Kamat, Chem. Rev., 93, 267 (1993). 2) V. Ramamurthy, D. F. Eaton, and J. V. Caspar, Acc. Chem. Res., 25, 299 (1992). 3) N. J. Turro and Z. Zhang, "Photochemistry on Solid Surfaces", (Elsevier) (1989). 4) L. Persaud, A. J. Bard, M. A. Fox, and T. E. Mallourk, J. Am. Chem. Soc., 109, 7309 (1987). 5) J. A. Incavo and P. K. Dutta, J. Phys. Chem., 94, 3075 (1990). 6),, 31, 173 (2000). 7),, 157, 215 (2004). 8),,, 21, 2 (2004). 9) H. Nishiguchi, H. Yamashita, and M. Anpo, J. Photochem. Photobiol. A: Chem., 92, 85 (1995). 10) H. Yamashita and M. Anpo, "Photofunctional Zeolites" (NOVA), 99-168, (2000). 11),, ( ), 172-182 (1998). 12),,,, 41, 1 (2003). 13),,, 17, 270 (1996). 14),, 56, 56 (2001). 15) V. Ramamurthy, D. R. Corbin, and L. J. Johnston, J. Am. Chem. Soc., 114, 3870 (1992). 16) J. A. Joy and V. Ramamurthy, Chem. Eur. J, 6, 8 (2000). 17) T. Wada, M. Shikimi, Y. Inoue, G. Lem, and N. J. Turro, Chem. Commun., 1864 (2001). 18) S. Jockusch, T. Hirano, and N. J. Turro, J. Phys. Chem. B, 104, 1212 (2000). 19) N. J. Turro, X.-G. Lei, W. Li, Z. Liu, A. McDermott, M. F. Ottaviani, and L. Abrams, J. Am. Chem. Soc., 122, 12571 (2000). 20) Y. Wada, T. Okubo, M. Ryo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, J. Am. Chem. Soc., 122, 8583 (2000). 21) H. Yamahita, S. Takada, M. Hada, H. Nakatsuji, and M. Anpo, Photochem. Photobio. A. Chem., 160, 37 (2003). 22) H. Yamashita, M. Nishimura, T. Nakajima, S. Takada, M. Hada, H. Nakatsuji, and M. Anpo, Res. Chem. Intermed, 27, 89 (2001). 23) H. Yamashita, A. Tanaka, M. Nishimura, and M. Anpo, Stud. Surf. Sci. Catal., 117, 651 (1998). 24) M. Anpo and H. Yamashita, "Heterogeneous Photocatalysis" (Wiley), 133-168 (1997). 25) M. Anpo and H. Yamashita, "Surface Photochemistry" (Wiley), 117-164 (1996). 26) H. Yamashita and M. Anpo, "CO 2 Conversion and Utilization" (ACS) 330-343, (2002). 27),,,,, 25, 772 (2002). 28),,, 25, 62 (2002). 29),,, 17, 13 (2004). 30),,,,, 34, 516 (1996). 31),,,,, 53, 673 (2002). 32),,,, 33, 773 (1995). 33) H. Yamashita and M. Anpo, Catal. Suv. Asia, 8, 35 (2004). 34),,, 76, 188 (2003). 35) N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox, K. Moller, and T. Bein, J. Am. Chem. Soc., 111, 530 (1989). 36) H. Yahiro, T. Kyakuno, and G. Okada, Topics in Catal., 19, 319 (2002). 37) M. Iwamoto, T. Abe, and Y. Tachibana, J. Mol. Catal. A, 155, 143 (2000). 38) M. Ogawa, K. Ikeue, and M. Anpo, Chem. Mater., 13, 2900 (2001). 39) H. Yamashita, K. Ikeue, T. Takewaki, and M. Anpo, Topics in Catal., 18, 95 (2002). 40) K. Ebitani, M. Morokuma, J. H. Kim, and A. Morikawa, J. Chem. Soc., Faraday Trans., 90, 377 (1994). 41) H. Yamashita, S. Ohshiro, K. Kida, K. Yoshizawa, and M. Anpo, Res. Chem. Intermed., 29, 881 (2003). 42) H. Yamashita, H. Nakao, M. Okazaki, and M. Anpo, Stud. Surf. Sci. Catal., 146, 795 (2003).

19 Vol.21, No.2 2004 63 Photocatalytic Reactions and Photochemical Processes in Zeolites and Mesoporous Materials Hiromi Yamashita Department of Materials Science and Processing, Graduate School of Engineering, The preparation and characterization of highly active photocatalysts and their environmental applications and the excited state chemistry of the guest molecules included within restricted cavities of zeolite and mesoporous silica have been reviewed. The design of molecular and/or cluster size photocatalysts prepared within the cavities of zeolites is of great interest because of their fascinating physical and chemical properties, unusual internal surface topology, and ion-exchange capacities. The unprecedented application of the anchoring techniques and the use of zeolites as supports can be considered an innovative breakthrough in the preparation of highly dispersed photocatalysts which exhibit unique and remarkable photocatalytic properties. Furthermore, zeolites are considered to be one of the most suitable materials to investigate a variety of host-guest interactions and their role in the photochemical nature of the guest molecules. The distinct and basic properties of zeolites, i.e., the micro-polarity and polarizability of the zeolite interior due to the type of cations and the size of the channels and cages has led to dramatic changes and modifications in the electronic states and molecular motion as well as the photochemical reactivity of molecules within the zeolites.