318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

28 Horizontal angle correction using straight line detection in an equirectangular image

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

untitled

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

RTM RTM Risk terrain terrain RTM RTM 48

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

Vol.2.indb

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

udc-2.dvi

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

1 1 tf-idf tf-idf i

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

05_藤田先生_責

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

人文地理62巻4号

0801297,繊維学会ファイバ11月号/報文-01-青山

soturon.dvi

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

JFE.dvi

04-“²†XŒØ‘�“_-6.01

.I.v e pmd


Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM GUI

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

,,,,., C Java,,.,,.,., ,,.,, i


第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

IR0036_62-3.indb

i JR NPO NPO 18

yasi10.dvi

SEJulyMs更新V7

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

kut-paper-template.dvi

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.


Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

Table 1 Means and standard deviations of topic familiarity for the topics used in the study Note. standard deviations are in parenthesis.

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

201711grade1ouyou.pdf

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

,,.,.,,.,.,.,.,,.,..,,,, i

橡A PDF

gr09.dvi

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

: Name, Tel name tel (! ) name : Name! Tel tel ( % ) 3. HTML. : Name % Tel name tel 2. 2,., [ ]!, [ ]!, [ ]!,. [! [, ]! ]!,,. ( [ ], ),. : [Name], nam

Web Web Web Web Web, i

untitled

m City Lights 1931 DIE 3 GROSCHEN-OPER G.W Blackmail 1929 DVD M M 1931Vampyr 1932

DEIM Forum 2009 E

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

The Japanese Journal of Psychology 1974, Vol. 44, No. 6, AN ANALYSIS OF WORD ATTRIBUTES IMAGERY, CONCRETENESS, MEANINGFULNESS AND EASE OF LEAR

26 Development of Learning Support System for Fixation of Basketball Shoot Form

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

The Physics of Atmospheres CAPTER :

橡rito98.PDF

L3 Japanese (90570) 2008

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

06’ÓŠ¹/ŒØŒì

Japanese Journal of Applied Psychology

Web Web Web Web i


49148

Tf dvi

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

Table 1. St-VAc blockcopolymers Table 2. Stability of dispersion of blockcopolymers in unsaturated polyester

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

Japanese Journal of Family Sociology, 29(1): (2017)

I


Transcription:

Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is an increasing need to automate handwork by skilled workers in industry. However, that handwork is usually difficult to express clearly in words. Furthermore, human s motion contains time and spatial perturbations, and this makes the automation even more difficult. In this report, spline functions are applied first to motion-capture data of brush strokes of Japanese calligraphy, and mathematical model of human s technique is established. Then, the isomorphism mapping method is introduced to deal with the time perturbations, and Min-Max norm was applied to deal with the spatial perturbations. Furthermore, a new analytical point of view called controllability is introduced to the mathematical model, and the target curve is derived as the goal of the automation. The motion control theory based on controllability is hereby established to automate human s handwork. Key Words: perturbation, isomorphism, min-max norm, controllability, mathematical model 1. 10 1) 2) 3) 1 2 4 6 1 Institute of Industrial Science, The University of Tokyo, 4 6 1 Komaba, Meguro-ku, Tokyo Received June 20, 2015 Revised March 13, 2016 3 3 1 3 1 TR 0006/16/5206 0317 c 2015 SICE

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) 6 1 2 3 4 5 9 10 2. 2. 1 (a) (c) 6 1 7 2 1 3 3 2. 2 4) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) 6 7 4 4 2 (1) X Y Z Yaw Pitch Roll P d 7 7 7 2. 3

52 6 2016 6 319 Fig. 1 Motion capture system Fig. 3 Coordinate system for motion data Table 1 Experimental data Fig. 2 Motion capture markers attached to Mouhitsu Fig. 1 Fig. 2 i 1st Phase ii (2nd Phase) iii (3rd Phase) 3 TotalData(Id, Time,X,Y,Z, Yaw, Pitch, Roll,P d). 1 9 1 1 1 n n Time sec X Y Z mm Yaw Pitch Roll deg P d gf/mm 2 1 2. 4 2. 2 2. 3 2 25 Fig. 3 13 i iii Fig. 3 X Y Z 7 1 Phase Table 1 Start P 1 P 2 P 3 ID End 12) Y

320 T. SICE Vol.52 No.6 June 2016 P d(t) =ω[min{y } +max{y } Y(t)]. ω 3. Table 1 (1) (1) Fourier Wavelet 13) 14) (1) 9 2 Id Time 7 DenoiseData(X, Y, Z, Yaw, Pitch, Roll,P d). 2 4. 1 4. 2 4. 3 4. 4 4. 4. 1 Cubic Spline Fig. 4 Idea of isomorphism knot Cubic Spline 7 2. 3 i iii 3 21 273 Cubic Spline 273 Spline (2) 2. 1 4. 2 [t a,t b ] f [τ a,τ b ] g (isomorphism) Fig. 4 t α = t a + α(t b t a), f(t α)=g(τ α) where τ α = τ a + α(τ b τ a), 3 α:0 α 1. 2 { t α = t a + α(t b t a), τ α = τ a + α(τ b τ a). 4 f g g f f g : f C[t a,t b ], g C[τ a,τ b ]. 4.1 4.1 5

52 6 2016 6 321 f g : f C[t a,t b ], g C[τ a,τ b ] (4) d dt f(tα) = τ b τ a d t b t a dτ g(τα). 6 [ ] (6) (τ b τ a)/(t b t a) f g [t a,t b ] [τ a,τ b ] t a t b τ a τ b 4 (6) 4. 3 2. 1 X Y Z Yaw Pitch Roll (P d) 7 1 g C[τ a,τ d ] 2. 3 i iii 3 f C[t a,t d ] (X Y Z) (Yaw Pitch Roll) (P d) 7 7 Ω(t) (7) 1 (7) 1 Ω(t) [t a,t d ] 7 C 7 [t a,t d ] [ ] X(t),Y(t),Z(t), Yaw (t), Ω(t), Pitch(t), Roll(t),P d(t) C[t a,t d ] C[t a,t d ] C[t a,t d ], C 7 [t a,t d ] (Product Space). 7 Ω(t) C 7 [t a,t d ] [ ] (7) 7 [t a,t d ] (almost everywhere) (7) 7 Ω(t) k 1 k n Ω k (t) Ω k (t) k k Ω k (t) C 7 [t a,t d ] C 7 [t a,t d ] 4. 4 Sobolev (7) Ω(t) C 7 [t a,t d ] Ω(t) (Ω 1(t),, Ω 7(t)) C 7 [t a,t d ]. ( ) d d dt Ω(t) dt Ω1(t),, d dt Ω7(t). 8 7 (X, Y, Z) (Yaw, Pitch, Roll) (P d) 7 7 7 7 7 14 S 1 C[t a,t d ] 2 Sobolev Ω S Ω S 7 ω i Ω i + i=1 7 d ω i+7 i=1 dt Ωi. 9 ω i 0 i =1, 2,, 14 (9) C 7 [t a,t d ] (9) C 7 [t a,t d ] (9) Sobolev

322 T. SICE Vol.52 No.6 June 2016 Table 2 Experimental data after isomorphism transformation 7 Ω(t) C 7 [t a,t b ] (X Y Z) Ω[1, 3](t) =(Ω 1(t), Ω 2(t), Ω 3(t)). Fig. 5 y = Z(t) and its mean (Yaw Pitch Roll) Ω[4, 6](t) =(Ω 4(t), Ω 5(t), Ω 6(t)). Table 3 Important points in brush motion n 7 R(n) = { Ω k (t) C 7 [t a,t d ]:1 k n } n-7 n C 7 [t a,t d ] dynamical system 4. 5 Table 1 Table 2 Table 1 S GP 1 GP 2 GP 3 E Table 2 GP 1 GP 2 GP 3 GP 1: [0, 2.7], GP 2: [2.7, 10.1], GP 3: [10.1, 12.3] 4. 6 Fig. 5 10) Table 3 1 2 3 [P S, P 1], [P 1,P 2],, [P 5,P E ] Fig. 5 Fig. 13 Fig. 5 Table 3 5. 5. 1 n-7 1 1 χ 2

52 6 2016 6 323 Fig. 9 Wavelet decomposition of y = d dt Z(t) Fig. 6 y = d Z(t) and its mean dt Fig. 10 y = dx(t) dt and its target curve Fig. 7 y = Z(t) and its Min-Max curve Fig. 11 y = Yaw (t) total variation Fig. 8 y = d Z(t) and its Min-Max curve dt 10) ( ) n-7 2 4 Step [ ] ( ) () 10) [ ] [Step 1] 2 1

324 T. SICE Vol.52 No.6 June 2016 Fig. 12 Function y = λ T (t) Fig. 13 Function y =Φ T (t) 3 2 n-7 3 [Step 2] 1 P 1 P 2, P k P S P E Table 3 P S P 1 P 2 P k P E [P S, P 1] [P 1,P 2],, [P k, P E ] 2 [Step 3] 2 n-7 1 Q S Q 1 Q 2, Q k Q E Table 3 2 Q S Q 1 Q 2 Q k Q E [Q S, Q 1] [Q 1,Q 2],, [Q k, Q E ] [Step 4] 1 n-7 2. 4 n-7 Table 3 Table 2 13 (7) 7 7 91 t [seconds] y = f(t) f(t) 5. 2 7 Fig. 5 Fig. 6 5. 1 5. 1 7 7 C 7 [t a,t d ] 6. 4 Ω(t) C 7 [t a,t d ] Min-Max 6. 1 n

52 6 2016 6 325 n-7 n-7 n-7 6. 2 Min-Max n-7 n-7 Min-Max Ω k (t) k =1, 2, n (10) Ω 0 (t) max 1 k n Ωk Ω 0 S = min max 1 j n, 1 k n Ωk Ω j S. 10 5) 5) 11) 7 7 7 n-7 (10) Min-Max Ω 0 (t) Ω 0 (t) Sobolev center Min-Max n (10) 0 n-7 0 (11) (11) 3 2 (11) 4 2 2 n-7 (i) (ii) I(n ratio) (iii) I(n index) I(n pfy) (Skill level) I(n R) = min 1 j n, max 1 k n Ωk Ω j S, I(n R) I(n ratio) = Ω 0 (t) if S Ω0 (t) S 0, I(n index) = log(i(n ratio)) if Ω 0 (t) S 0, I(n pfy) =round (I(n index), 2). 11 I(n R) = 2.139195 10 2, I(n ratio) = 2.748499 10 1, I(n index) =5.609044 10 1, I(n pfy) = 0.56. 12 1 4.61 ( 0.01) 0.56 Fig. 7 Fig. 8 Ω k (t) k =1, 2, 13 Min-Max (10) Min-Max 14 Min-Max Min-Max

326 T. SICE Vol.52 No.6 June 2016 6. 3 (11) 4 8 6) n-7 (Lattice) 15) 7. 1 (c) 7) 7 9 n-7 7. 1 n-7 Z Fig. 7 Fig. 8 1 Fig. 7 (a-1) (b-1) Fig. 8 (c-1) (d-1) 2 (a-1) (c-1) (a-2) (b-2) (a-2) (a-1) (c-2) (a-k) (a-(k+1)) k 17) 7. 2 7. 1 n-7 R(n) = { Ω k (t) C 7 [t a,t d ]:1 k n } where Ω k (t) =(Ω k 1(t),, Ω k 7(t)) C 7 [t a,t d ]. Ω j (t) = ( Ω j 1 (t),, Ωj 7 (t)) C 7 [t a,t d ] 13 14 1 Ω j i (t) Ω 17) [ΩA ΩD] =wavedec(ω,n, name ). 15 Ω name N 2 [ΩA ΩD] ΩA ΩD Ω(t) 7 7 7 7 (Core Orbit) Ω C (t) = ( Ω C 1 (t),, Ω C 7 (t) ). 16 (14) Ω j (t) Ω C (t) 7. 3 5 Fig. 9 Fig. 9 25 325 Fig. 9

52 6 2016 6 327 7 7. 1 8. 1 16) (7) 1 1 2 3 4 0 5 (controllable) (1) (5) 9. 9. 1 1 Ω(t) =(Ω 1(t), Ω 7(t)), t [t a,t d ] Φ(t) t Φ(t) [Ω 7(t) ϕ(t)]dt t a where { 6 }1 ( ) 2 2 d ϕ(t) =λ(t) δ k dt Ω k(t). 17 k=1 λ(t) Φ(t) (18) (19) δ k k =1, 2,, 6 λ(t) 0 for all t [t a,t d ], { 0 for all t [t a,t d ], Φ(t) =0 at t = t d. 18 19 (18) (19) (Condition of controllability) λ(t) Φ(t) (Adjustment function) (Verification function) 8 (3) ( ) (1) (3) (1) (2) 18) [t a,t d ] 18) n-7 (3) (18) (19) (1) (3) [I] [III] (Target curve)

328 T. SICE Vol.52 No.6 June 2016 Ω T (t) = ( Ω T 1 (t), Ω T 2 (t),, Ω T 7 (t) ) [I] Ω T k (t) =(1+ρ(t)) Ω c k(t), 1 k 7, t [t a,t d ]. 20 ρ(t) ρ(t) I(n ratio) [II] td d td dt ΩT k (t) dt d dt Ωj k (t) dt, 21 t a min 1 j n t a 4 k 6. Ω j (t) = ( Ω j 1 (t), Ωj 2 (t),, Ωj 7 (t)) j(1 j n) [III] t Φ T (t) [Ω T 7 (t) ϕ T (t)]dt t a where { 6 ( ϕ T (t) =λ T d (t) δ k dt ΩT k (t) k=1 ) 2 }1 2 Φ T (t) 0 t [t a,t d ], Φ T (t d )=0. λ T (t) =μ T (t) 1 n λ j (t), t [t a,t d ]. n j=1 22 23 24 λ j (t) j (1 j n) μ T (t) n-7 Ω k (t) (17) λ j (t) λ T (t) (19) Ω T (t) Ω T (t) =μ T (t)ω C (t). 25 9. 2 Ω T (t) Fig. 10 Fig. 11 [I] [III] (a) (d) (a) (20) ρ(t) ρ(t) 0.059, t [t a,t d ] I(n ratio) (cf (12)) 26 Ω T k (t) Fig. 10 I (b) (21) Fig. 11 II (c) (24) μ T (t) (24) λ T (t) Fig. 12 λ T (t) (18) (d) (c) λ T (t) (22) Φ T (t) Fig. 13 Φ T (t) (19) (23) (24) III (a) (d) I III 2. 1 10. (1) 3 5 7 7 C 7 [t a,t d ] (2) 1 (3) 7 9 i)

52 6 2016 6 329 ii) (4) 25 (5) 11 (4) 1 1 2 3 3 17 M. Misiti, Y. Misiti, G. Oppenheim and J.-M. Poggi: Wavelets and their Applications, 63/87, ISTE Ltd. (2007) 18 4 465, (2008) 2007 2013 2002 2005 1 Mizuho Industry Focus, 150-6, 1/22 (2014) 2 11, 82/95 (2014) 3 20-2, SP-A, 117/128 (2005) 4 G-Media NHK, http://www.nhk-g.co.jp/program/news document ary/2010/148/index.html (2010) 5 DVD (2008) 6 1/144, (2013) 7 100 (2001) 8 (2010) 9 (2012) 10 (1999) 11 554/561 (2014) 12 142, 35/43 (1988) 13 S. Mallat: A Wavelet Tour of Signal Processing, 2ndedition, Academic Press (1999) 14 D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard: Wavelet Shrinkage: Asymptopia, J. Roy. Statist. Soc. B, 57-2, 301/369 (1995) 15 4 248, (2008) 16 5 (2001)