d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Similar documents
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

本文/目次(裏白)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

プログラム

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

PDF

1).1-5) - 9 -

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

第86回日本感染症学会総会学術集会後抄録(I)

I

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

201711grade1ouyou.pdf

TOP URL 1

LLG-R8.Nisus.pdf

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

構造と連続体の力学基礎

nsg02-13/ky045059301600033210

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

数学の基礎訓練I

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

note4.dvi

Lecture 12. Properties of Expanders

untitled


untitled

スケーリング理論とはなにか? - --尺度を変えて見えること--

日本内科学会雑誌第98巻第4号


日本内科学会雑誌第97巻第7号

: , 2.0, 3.0, 2.0, (%) ( 2.


vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Mott散乱によるParity対称性の破れを検証

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

抄録/抄録1    (1)V

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

TOP URL 1

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

untitled

研修コーナー

パーキンソン病治療ガイドライン2002

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

QMII_10.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

gr09.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

meiji_resume_1.PDF

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

振動と波動

TOP URL 1

Microsoft Word - 章末問題

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

( ) ) AGD 2) 7) 1

30

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

基礎数学I

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Note.tex 2008/09/19( )

A

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

untitled

SPring-8_seminar_

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

Transcription:

5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S 2 Z ()] d α 1 B(y) y 3 B(y) = c z y y = s 2 t = t c (y = ) s 2 = T A S 2 3T d (, t T c) = A(, t c ) (5.2) s 2 s 2 < y s 2 y y = S 2 y > tot (5.1) y t s 2 (5.1) 2 y B(y) 78

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z 5.1 3 y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.12) (5.2) t c s 2 s 2 = 1 2 + α C νt ν c = T A S 2 3T d (, t i T c), ν = (d + α)/(2 + α) (5.3) 4 t c σs 2 (4.17) σ 2 s 4 = 5T d (2 + α)t A C ν t ν c (5.4) d 2 y t y y t y t 4 ln(t2/3 /y) y, 2 t s 2 4 ln(t2/3 /y) y ln(1/y) + 1], 2 2 = πt 2y y ln(1/y) + 1], 1/2 2 1 πt 2y 1/2 πy1/2, 1 79

s 2 < s 2 y = y s 2 < y y y > y(t) y = y() y s 2 y d 2 + α, d > 2 α s 2 y = 2 ln(1/y ) + 1], 2, 1 πy 1/2, 1 3 2 y 5.2 3 3 d = 3, α = 1 (5.1) y s 2 = u = x(y + x 2 )/t x 3 dx ln u 1 ] 2u ψ(u) c z y (5.5) α = s 2 s 2 1 s 2 2 y 5.2.1 3 s 2 > t c t = t c y = (5.5) A(, t c ) = dxx 3 ln u c 1/2u c ψ(u c )] = s 2, u c = x 3 /t c (5.6) (4.17) s 2 = A(, t c ) = c z y 1 σs 2 (5.6) t c = T c /T 8

σ s t c 1 (3.12) 1 3 C 4/3t 4/3 c s 2 = c z y 1 σ 2 s, y 1 = T A 6c z T σs 2 T c σs 2 = 2C ( ) 4/3 4/3T Tc (5.7) T A T (5.5) (5.6) y A(y, t) c z y = A(, t c ) (5.8) y y 2 t t c t = T/T = t c T/T c y T/T c t c 1 y(t) = y 1 (t)σ 2 (t) (5.9) y = y 1 (t)σ 2 + σ 2 (t)] y (3.13) 4 x 3 dx ln u 1 ] 2u ψ(u) 1 3 C 4/3t 4/3 πt c y (5.1) 4 (5.1) (5.8) y y y t πt c C 4/3 y 4 3 (t4/3 t 4/3 c ) y (T/T c 1) 2 t c { 4C4/3 t 1/3 ( ) ]} 4/3 2 c T y(t) 1 3π T c = { 16C4/3 t 1/3 ( ) } 2 c T 1 9π T c ( ) 2 ( ) 2 16C4/3 T t 2/3 c 1 (5.11) 9π T c (4.27) y 1 (t) σ 2 (t) σ 2 (t) = y (t) y 1 (t) C 4/3t 4/3 ( c T 6c z y 1 T c ) 4/3 1] 2C 4/3t 4/3 c 9c z y 1 (T/T c 1) ( ) T 1 T c (5.12) 81

5.2.2 s 2 y y (5.5) 1 y = s 2 /c z t c = T c /T t c A(, t c) = s 2 = c z y (5.13) A(, t c ) = c z y 1 σ 2 s σ p y = y() = y 1 σ 2 p, y 1 = T A 6c z T (5.14) (4.18) : y(σ, ) = y 1 (σ 2 σ 2 s), : y(σ, ) = y 1 (σ 2 + σ 2 p), t c 1 A(, t c) t c 4/3 Tc = t ct σ p σp 2 = 2C ( ) 4/3T T 4/3 c (5.15) T A T (5.13) (5.5) y(t) y T/T c A(y, t) c z y = A(, t c) (5.16) t c t u ψ(u) ln u 1 2u ψ(u) 1, (1 u) 12u2 (5.5) t 2 x 3 dx ln u 1 ] 2u ψ(u) = dx x3 12u 2 = t2 12 x dx (y + x 2 ) 2 t 2 24y(1 + y), u = x(y + x2 )/t y t y(t) y + t2 = y + (t c) 2/3 ( ) 2 T 24c z y 8C 4/3 y t 2-1/y T c 82

Curie-Weiss t (5.8) (5.16) y t y t y 1.4 y(t).2 T c /T =.1.5.1. 1. 2. 3. 4. 5. T/T c 1: y 11 (5.8) (5.16) Appendix A.4 5.2.3 3 χ(q) y (5.1) d = 3, α = s 2 = A(y, t) c z y (5.17) A(y, t) = x 2 dx ln u 1 ] 2u ψ(u), u = (y + x 2 )/t u x x x 3 x 2 s 2 y T N y = s 2 83

.6 T c * /T =.1.4 y(t).5.2.1.. 1. 2. 3. 4. 5. * T/T c 11: y A(, t N ) = dxx 2 ln u c 1/2u c ψ(u c )] = s 2, u c = x 2 /t N (5.18) T t N = T N /T t N 1 (3.13) 1 2 C 3/2t 3/2 N s2 (5.19) (5.17) u x (4.17) σ 2 s 4 = 15T 2T A C 3/2 t 3/2 N (5.2) Curie-Weiss T (5.17) y t y t = T/T Q Curie-Weiss (5.17) Appendix A.4 84

(t t N ) y y y x 2 dx ln u 1 ] 2u ψ(u) 1 2 C 3/2t 3/2 πt N y (5.21) 4 (5.17) y 1 y y y t πt N C 3/2 y 4 2 (t3/2 t 3/2 N ) ( ) 2 ( ) ] 3/2 2 2C3/2 T y t N 1 π T N ( 3C3/2 π ) 2 ( ) 2 T t N 1 (5.22) T N χ(q) (T/T N 1) 2 5.2.4 s 2 < s 2 1 T N = t N T σ p A(, t N ) = s 2 = c z y, σ 2 p = y y 1 (5.23) y = y() y 1 4 (5.23) (5.17) A(y, t) c z y = A(, t N) (5.24) y t (5.24) (5.23) y t 2 (5.17) u x 2 dx ln u 1 ] 2u ψ(u) dx x2 12u 2 = t2 x 2 dx 12 (y + x 2 ) 2 ( = t2 ) dx x2 12 y y + x 2 = t2 1 y tan 1 1 1 ] πt2 24 y 1 + y 48 y 85

(5.24) y ( ) 2 y y + πt2 2 T = y + 48c z y 48 t N 5/4 c z C 3/2 T N 5.3 2 2 3 (t > ) y log y 1 t = y > y 5.3.1 y t s 2 = x 2 dx ln u 1 ] 2u ψ(u) c z y (5.25) u = x(y + x 2 )/t c z = 1 (t > ) y > s 2 y (5.25) s 2 > t = y y t 2/3 y (5.25) s 2 = t 4 ln ( t 2/3 y ) c z y y t c = T c /T t c = 2 s 2 y t 3/2 exp( 2t c /t) y t c 3 2 3 2 3 (Takahashi 1997) 86

s 2 < y y y = s 2 /c z 3 = t2 24 x 2 dx ln u 1 ] 2u ψ(u) 1 y y tan 1 1 y + 1 1 + y x 2 dx 1 12u 2 ] πt2 48y, (y 1) y y 1 y c z y = c z y + πt2 48y y y y y 3 T 2 πt 2 y = y + 48c z y y 5.3.2 y y (5.25) s 2 = t 2 φ(y/t) φ((1 + y)/t)] 1 2 y ln φ(u) = xdx ln u 1 ] 2u ψ(u) ( ) ] 1 + 1 y = (u 1/2) ln u + u + ln Γ(u) ln 2π, u = (y + x 2 )/t (5.26) (5.26) φ(u) u u 1 ln u, u 1 φ(u) 2 (5.27) 1 12u, u 1 s 2 < y y u = (y + x 2 )/t 1 5.26 y s 2 y 2 ( ) ] 1 ln + 1 = s 2 y 87

(5.26) ( ) ] ( ) ] 1 1 y ln + 1 y ln + 1 = t φ(y/t) φ((1 + y)/t)] (5.28) y y (5.27) u 1 φ(u) u y y ( ) ] ( 1 1 y ln + 1 y ln y y = y + y ) ] ( ) 1 + 1 ln (y y ) t2 y 12y t 2 12y ln(1/y ) + t 2 ln(1/y ) s 2 > y y/t 1 φ(u) u 1 u y s 2 = t 4 ln ( t y ) 12 ( ) ] 1 y ln + 1 y y y t N = T N /T ( ) ] 1 t N = 2 s 2 = y ln + 1 y y y te 2t N /t t < t N 5.4 3 (5.8) T c (5.16) (5.8) SCR c z SCR 2 (5.8) y c z 4 88

Arrott (5.8) y c z y (5.8) (5.8) y t (5.8) T T A T A T t 5.4.1 p eff /p s vs t c Curie-Weiss Curie p eff p s p eff /p s ( σ eff, σ s ) 1 T c p eff p c (p c + 2) = p 2 eff p c p s (Rhodes & Wohlfarth 1963) p c p s p c /p s T c Rhodes-Wohlfarth T c p c /p s = 1 T c p c /p s > 1 2 Takahashi Rhodes-Wohlfarth p c /p s p eff /p s T c t c = T c /T 89

(Takahashi 1986) χ Curie-Weiss (gµ B ) 2 χ = N µ 2 B σ2 eff 3(T T c ) y χ = N /(2T A y) Curie-Weiss y t χ N = = 1 2T A y = µ 2 B σ2 eff 3(gµ B ) 2 (T T c ) σ 2 eff 12T (t t c ) (5.7) σ 2 s t c σeff 2 = 12T (t t c ) 2T A y (σ eff /σ s ) 2 2 + α 1 1C ν (dy/dt) = 6 σ2 s 4 1 (2 + α) 15C ν t ν c ( ) t tc (5.16) y Curie-Weiss (t t c ) t- 3 t c 1 dy/dt.15 (α = 1, ν = 4/3) σ eff /σ s t c = T c /T t ν c σ eff /σ s 1.4 t 2/3 c (5.29) (5.29) 12 T ZrZn 2 (Kontani, et al. 1975), MnSi(Yasuoka, et al. 1978), Ni 3 Al(de Boer, et al. 1969), Sc 3 In(Hioki & Masuda 1977), Y(Co,Al) 2 (Yoshimura, et al. 1987), (Fe,Co)Si(Shimizu et al. 199), YNi x (Nakabayashi, et al. 1992) σ eff /σ s T c /T T NMR F 1 (5.16) (Nakabayashi et al. 1992) y σ s σ eff T c (K) T (K) σ eff /σ s T c /T MnSi.4 2.25 3 231 5.6.194 Ni 3 Al.77 1.3 41.5 276 16.9.15 Sc 3 In.45 1.3 5.5 479 28.9.115 ZrZn 2.12 1.44 21.3 139 12..15 9: 9

8 6 Y(CoAl) 2 (FeCo)Si YNi σ eff /σ s 4 2 Ni3Al Sc3In ZrZn2 MnSi.5.1.15 T c /T 12: σ eff /σ s - T c /T YNi 2 Rhodes-Wohlfarth Takahashi 13 x, y Rhodes-Wohlfarth Takahashi 8 6 2 p C /p s 4 p eff /p s 1 2 1 2 T c.5.1.15 T c /T 13: Y x Ni y p eff /p s T c /T (T c /T ) 2/3 (5.29) Y(Co,Al) 2 (p eff /p s ) 2 (T /T c ) 4/3 14 T F 1 p eff /p s T c /T 91

Y(Co Al) 2 4. (p eff /p s ) 2 2... 1. 2. (T /T c ) 4/3 14: Y(CoAl) 2 p eff /p s T c /T (5.8) c z Rhodes-Wohlfarth Takahashi Rhodes-Wohlfarth Takahashi t c 1 t c = T c /T Curie-Weiss t c T σ eff /σ s t c T c T t c 1 Curie-Weiss S 2 i = S(S + 1) = 3 N 2 q dω coth βω 2 Imχ(q, ω) (5.3) T c J kt c τ h/j τ 92

J kt/ω (5.3) coth(βω/2) 2T/ω S(S + 1) = 3kT N 2 q dω π Imχ(q, ω) ω = 3kT N 2 Reχ(q, ) q Reχ(q, ) N S(S + 1) 3kT 5.4.2 Q 3 Γ q = Γ q α (κ 2 + q 2 ) = 2πT x α (y + x 2 ) Γ q y Curie-Weiss 1 Γ q x α T = 2π y t y y/ t Γ q /x α T β-mn β-mn.9 Al.1 Q (Shiga, et al. 1994) 15 SCR (5.1) 93

5 4 β Mn β Mn.9 Al.1 Γ (K) 3 2 1 1 2 3 T (K) 15: β-mn Γ F. R. de Boer, et al. (1969). Exchange-Enhanced Paramagnetism and Weak Ferromagnetism in the Ni 3 Al and Ni 3 Ga Phases; Giant Moment Inducement in Fe-Doped Ni 3 Ga. J. Appl. Phys. 4:149 155. T. Hioki & Y. Masuda (1977). Nuclear Magnetic Resonance and Relaxation in Itinerant Electron Ferromagnet Sc 3 In. J. Phys. Soc. Japan 43:12 126. M. Kontani, et al. (1975). NMR Studies on Magnetic Properties of ZrZn 2. J. Phys. Soc. Japan 39(3):665 671. R. Nakabayashi, et al. (1992). Itinerant Electron Weak Ferromagnetism in Y 2 Ni 7 and YNi 3. J. Phys. Soc. Japan 61(3):774 777. P. Rhodes & E. P. Wohlfarth (1963). The Effective Curie-Weiss Constant of Ferromagnetic Metals and Alloys. Proc. R. Soc. 273:247 258. M. Shiga, et al. (1994). Polarized Neutron Scattering Study of β-mn and β-mn.9 Al.1. J. Phys. Soc. Jpn. 63(5):1656 166. K. Shimizu, et al. (199). Effect of Spin Fluctuations on Magnetic Properties and Thermal Expansion in Pseudobinary System Fe x Co 1 x Si. J. Phys. Soc. Jpn. 59(1):35 318. Y. Takahashi (1986). On the Origin of the Curie-Weiss Law of the Magnetic Susceptibility in Itinerant Electron Ferromagnetism. J. Phys. Soc. Jpn. 55:3553 3573. Y. Takahashi (1997). Spin-fluctuation theory of quasi-two-dimensional itinerant-electron ferromagnets. J. Phys.: Condens. Matter 9:1359 1372. H. Yasuoka, et al. (1978). NMR and Susceptibility Studies of MnSi above T c. J. Phys. Soc. Japan 44(3):842 849. 94

K. Yoshimura, et al. (1987). NMR Study of Weakly Itinerant Ferromagnetic Y(Co 1 x Al x ) 2. J. Phys. Soc. Jpn. 56:1138 1155. 95