(a) Fig.1 Bricks and mortar model of stratum corneum X Fig.2(a) (b) 1,2) 2 1 (b) Fig.2 Lamellar structure in the intercellular lipid a

Similar documents
The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Fig.1 1) Table 1 n-c 30H wt% 25 2) DSC Fig.2 n-c 30H wt% DSC Fig.3 Table 1 Density and viscosity of oils and hardness of solid paraffin/oi

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

PowerPoint Presentation

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

以 上 のような 目 標 に 向 けて 放 射 光 X 線 の 構 造 解 析 研 究 を 進 めるに 当 たって,ヒト 角 層 の 構 造 を 明 らかにすること が 最 大 の 目 標 である それも 生 きている 人 体 の 皮 膚 上 にあ るヒト 角 層 の 構 造 を 明 らかにしたいと

X線分析の進歩36 別刷

0801391,繊維学会ファイバ12月号/報文-01-西川

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

XFEL/SPring-8

) ,

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

X線分析の進歩45

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND


第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

yasi10.dvi

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

16_.....E...._.I.v2006

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :


* * 2


X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

浜松医科大学紀要

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

teionkogaku43_527

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

社会システム研究21_ 畠山.indd

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization



Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Core Ethics Vol. a

06’ÓŠ¹/ŒØŒì

J No J. J

untitled


評論・社会科学 98号(P)☆/1.鰺坂

/ p p

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

放射線化学, 97, 29 (2014)

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a


J. Jpn. Inst. Light Met. 65(6): (2015)


untitled

Rhythmic Gymnastics RG 3) 2 GymnastikTurnen ) ) 1963 Modern Gymnastics FIG 10 Modern Rhythmic Gymnastics 1977 Modern Rhythmic S

Jon. J. Hosp. Pharm. 21(1) (1995) l Stability of Thiamine in Intravenous Hyperalimentation Containing Multivitamin KEIICHI ASAHARA*, YASUSHI GOD

CHEMOTHERAPY APR. 1984

( ) ( ) (action chain) (Langacker 1991) ( 1993: 46) (x y ) x y LCS (2) [x ACT-ON y] CAUSE [BECOME [y BE BROKEN]] (1999: 215) (1) (1) (3) a. * b. * (4)

Vol.54 No (Mar. 2013) 1,a) , A Case Study of the Publication of Information on the Japan Earthquake Naoto Matsumoto 1,a

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

第122号.indd

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

untitled

[ ]大野

126 学習院大学人文科学論集 ⅩⅩⅡ(2013) 1 2

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

デジタルメディアの時代における協働社会のデザインと地方行政の役割 : 元住吉商店街プロジェクトでの実践活動を通して


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Clinical Study of Effect of Intrathecal Use of Alpha-tocopherol on Chronic Vasospasm Hirotoshi Sano, Motoi Shoda, Youko Kato, Kazuhiro Katada, Youichi

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

untitled

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

WASEDA RILAS JOURNAL


.N..

,


橡最終原稿.PDF


CHEMOTHERAPY JUNE 1986

Core Ethics Vol.

大学論集第42号本文.indb

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra


Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very ba

28 Horizontal angle correction using straight line detection in an equirectangular image


Microsoft Excelを用いた分子軌道の描画の実習

Structure and Function of Intercellular Lipis in the Stratum Corneum Genji IMOKAWA Institute for Fundamental Research, Kao Corporation Lipids forming

戦後日本の失業対策事業の意義

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

製紙用填料及び顔料の熱分解挙動.PDF

kiyo5_1-masuzawa.indd

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Transcription:

Netsu Sokutei 34 4 159-166 2007 6 23 2007 7 24 Structure and Phase Transitions of Intercellular Lipid Assembly in Stratum Corneum Ichiro Hatta, Kana Nakanishi, and Noboru Ohta (Received June 23, 2007; Accepted July 24, 2007) Stratum corneum which is composed of corneocytes and intercellular lipid matrix plays an important role in barrier function and maintenance of water in skin. The intercellular lipid matrix bears the main part in the function. Therefore, it is important to make clear the structure formed by the intercellular lipids. It is well-known from X-ray diffraction, electron diffraction, neutron scattering, etc. that the structure consists of long and short lamellar structures and in the orthogonal direction hexagonal and orthorhombic hydrocarbon-chain packings. However, until now the relation between each lamellar structure and each hydrocarbon-chain packing has been unresolved. From the thermal analysis and the temperature scanning small- and wide-angle X- ray diffraction analysis in stratum corneum, we revealed that there are two domains: One is the long lamellar structure with the hexagonal hydrocarbon-chain packing and the other the short lamellar structure with the orthorhombic hydrocarbon-chain packing. Based upon the structural evidence we can further study the functional mechanism of cosmetics, the drug penetration mechanism, etc. Keywords: stratum corneum; thermal analysis; X-ray diffraction; lipid; lamellar 20 µm Fig.1 2007 The Japan Society of Calorimetry and Thermal Analysis. 159

(a) Fig.1 Bricks and mortar model of stratum corneum. 1 2 2 15 2 4 4 X Fig.2(a) (b) 1,2) 2 1 (b) Fig.2 Lamellar structure in the intercellular lipid assembly of stratum corneum. (a) Long lamellar structure. (b) Short lamellar structure. Fig.2(b) 13 nm Fig.2 13.6 nm 6nm 1 broad-narrow-broad 3) Fig.2(a) Broad-narrow-broad 1 1 Fig.3 hexagonal orthorhombic 0.42 nm 0.42 nm 0.37 nm Fig.3 3 0.42 nm 0.37 nm 160

(a) (b) (a) Fig.3 Hydrocarbon-chain packing in intercellular lipid assembly of stratum corneum. (a) Hexagonal hydrocarbon-chain packing. (b) Orthorhombic hydrocarbon-chain packing. 1 X Fig.4(a) 20 S 0.0734 nm 1 13.6 nm 1 2 0.0734 nm 1 2 3 3 4 4 5 5 4) 2 3 1 Fig.4(a) X Fig.4(b) 20 S 2.407 nm 1 0.415 nm 2.69 nm 1 0.372 nm S 2.399 nm 1 0.417 nm 4) Fig.4(b) S 2.407 nm 1 S 2.399 nm 1 5) T / (b) T / S / nm 1 S / nm 1 1 10 3 Fig.4 Simultaneous SAXD and WAXD measurements of the temperature dependence of intensity in hairless mouse stratum corneum. (a) SAXD. (b) WAXD (See Fig.1 in reference 4 in detail). 1 µm 4 25 wt% 6) Fig.4(a)1 2 3 Fig.2(b) 7,8) Fig.5(a) Intensity S 2 (arb.units) Intensity (arb.units) 1 10 4 1 10 2 1 10 3 161

Full Width at Half Maximum / nm 1 Spacing / nm Fig.5 (a) Water Content/ wt% (b) Water Content/ wt% (a) Dependence of spacing on the water content in the stratum corneum for the 2nd order diffraction of the long lamellar structure ( )and for the 1st order diffraction of the short lamellar structure ( ). (b) Full width at half maximum for the above X-ray diffraction peaks. spacing spacing 13.6 nm 2 2 Fig.4(a) 0.15 nm 2 Fig.4(a) Bouwstra 9,10) spacing 20 wt% 5 wt% 20 wt% 3 11) water pool water pool X 8) 5.7 nm 24 h6.2 nm 5.7 nm 6.2 nm Fig.5(a) X X Fig.5(b) X 7) Bouwstra 9,10) X 20 30 wt% Fig.5(b) X 20 30 wt% Bouwstra 9,10) X 20 30 wt% 2) 20 30 wt% X 20 30 wt% Fig.5(b) 162

Endothermic 2 mj s 1 T / Fig.6 Thermogram for stratum corneum of a hairless mouse on the 1st heating, 1st cooing, 2nd heating and 2nd cooling runs. The scan rate was 10 min 1. X spacing 20 30 wt% 2 20 30 wt% 20 30 wt% Walkley DSC 6,12-14) DSC 0 Walkley 25 wt% 12) Inoue 29 wt% 13) Takenouchi 28 wt% 14) Imokawa 25 wt% 33.3 % 33.3 wt% [0.333/(1 0.333)] 100 wt% 6) DSC 25 29 wt% 3 0 DSC Van Duzee 15) Goldman 16) Goodman 17) Gay 18) Dreher 19) Rehfeld 20) Goldman 21) 20 35 wt% Van Duzee 15) 40, 75, 85, 107 40 Gay 18) 0 120 10 min 1 22) Fig.6 1 2 DSC 1 Fig.6 1 33, 39, 52, 73, 97 1 100 DSC 163

1 48, 37 2 55 2 1 2 min 1 100 1 35 Fig.6 33 39 0 120 1 14.6 J g 1 1 13.8 J g 1 2 13.4 J g 1 1 13.7 J g 1 1 1 22) X 4) 2 Fig.2(a) Fig.2(b) hexagonal orthorhombic Fig.3 X 4) 1 X 1 Fig.4(a) (b) 4 1 32, 39, 51, 71 103 56 A. X S 0.0734 nm 1 13.6 nm 1 51 Fig.4(a) A B. 51 0.165 nm 1 6 nm 71 0.195 nm 1 5 nm Fig.4(a) B C. 32 S 2.24 nm 1 0.45 nm 51 S 2.19 nm 1 0.46 nm 32 Fig.6 Fig.4(b) C 22) D. 39 51 S 2.43 nm 1 0.41 nm 71 S 2.39 nm 1 0.42 nm Fig.4(b) D Fig.4(a) (b) A C Fig.4(a) (b) B D 4 X 120 9,10) 164

Intensity S 2 / arb. units S / nm 1 Fig.7 Change of X-ray diffraction profiles with temperature for the 2nd order, 3rd order and 4th order diffractions of the long lamellar structure and for the 1st order diffraction of the short lamellar structure. Fig.6 2 51 1 51 Fig.7 2 3 4 50 S 0.174 nm 1 5.75 nm Bouwstra 10 Fig.3 4) X 1) G. S. K. Pilgram and J. A. Bouwstra, Basic and Clinical Dermatology 26, 107 (2004). 2) I. Hatta and N. Ohta, Photon Factory Activity Report 2003 #21, 49 (2004). 3) D. C. Swartzendruber, P. W. Wertz, D. J. Kirko, K. C. Madison, and D. T. Downing, J. Invest. Dermatol. 92, 251 (1989). 4) I. Hatta, N. Ohta, K. Inoue, and N. Yagi, Biochim. Biophys. Acta 1758, 1830 (2006). 5) G. S. K. Pilgram, A. M. Engelsma-van Pelt, J. A. Bouwstra, and H. K. Koerten, J. Invest. Dermatol. 113, 403 (1999). 6) G. Imokawa, H. Kuno, and M. Kawai, J. Invest. Dermatol. 96, 845 (1991). 7) N. Ohta, S. Ban, H. Tanaka, S. Nakata, and I. Hatta, Chem. Phys. Lipids 123, 1 (2003). 8) G. Ch. Charalambopoulou, T. A. Sterotis, Th. Hauss, A. K. Stubos, and N. K. Kanellopoulos, Physica B 165

350, e603 (2004). 9) J. A. Bouwstra, G. S. Gooris, J. A. van der Spek, and W. Bras, J. Invest. Dermatol. 97, 1005 (1991). 10) J. A. Bouwstra, G. S. Gooris, J. A. van der Spek, S. Lavrijsen, and W. Bras, Biochim. Biophys. Acta 1212, 183 (1994). 11) J. A. Bouwstra, A. de Graaff, G. S. Gooris, J. Nijsee, J. W. Wiechers, and A. C. van Aelst, J. Invest. Dermatol. 120, 750 (2003). 12) K. Walkeley, J. Invest. Dermatol. 59, 225 (1972). 13) T. Inoue, K. Tujii, K. Okamoto, and K. Toda, J. Invest. Dermatol. 86, 689 (1986). 14) M. Takenouchi, H. Suzuki, and H. Tagami, J. Invest. Dermatol. 87, 574 (1986). 15) B. F. Van Duzee, J. Invest. Dermatol. 65, 404 (1975). 16) G. M. Goldman, D. B. Guzek, R. R. Harris, J. E. Mckie, and R. O. Potts, J. Invest. Dermatol. 86, 255 (1986). 17) M. Goodman and B. W. Barry, Analytical Proceedings 23, 397 (1986). 18) C. L. Gay, R. H. Guy, G. M. Golden, V. H. W. Mak, and M. L. Francoeur, J. Invest. Dermatol. 103, 233 (1994). 19) F. Dreher, P. Walde, P. Walther, and E. Wehrli, J. Control. Release 45, 131 (1997). 20) S. J. Rehfeld and P. M. Elias, J. Invest. Dermatol. 79, 1 (1982). 21) G. M. Goldman, D. B. Guzek, A. H. Kennedy, J. E. McKie, and R. O. Potts, Biochemistry 26, 2382 (1987). 22) I. Hatta, K. Nakanishi, and K. Ishikiriyama, Thermochim. Acta 431, 94 (2005). X Ichiro Hatta, Industrial Application Div., Japan Synchrotron Radiation Research Institute, TEL. 0791-58-2854, FAX. 0791-28- 0830, e-mail: hatta@spring8.or.jp Kana Nakanishi, TORAY Research Center Inc., TEL.077-533-8603, FAX.077-533-8637, e-mail: Kana_Nakanishi@trc.toray.co.jp Noboru Ohta, Industrial Application Div., Japan Synchrotron Radiation Research Institute, e-mail: noboru_o@spring8.or.jp X 166