重力方向に基づくコントローラの向き決定方法

Similar documents
数学演習:微分方程式

Gmech08.dvi

株主通信:第16期 中間報告書

Gmech08.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

85 4

mugensho.dvi

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

all.dvi

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

高等学校学習指導要領

高等学校学習指導要領

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク


曲面のパラメタ表示と接線ベクトル

Xray.dvi

08-Note2-web

untitled

, , B 305, ,

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

chap1.dvi

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

鉄筋単体の座屈モデル(HP用).doc

窶廰ナ・ア窶。X窶樞€昶€愴・.3

鹿大広報148号

鹿大広報151


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

70 : 20 : A B (20 ) (30 ) 50 1

29

DVIOUT

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Gmech08.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

K E N Z OU

meiji_resume_1.PDF

pdf

KENZOU

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1


CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

4‐E ) キュリー温度を利用した消磁:熱消磁

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

TOP URL 1

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

p01.qxd


株主通信:第18期 中間

1



平成27年度版 税金の本 第5章 贈与と税金 第2節 贈与税の特例 (PDF)

1003shinseihin.pdf

市民参加プログラムパワーポイント版 資料編

ワタベウェディング株式会社

30

2

POINT POINT P


5


untitled


14

株主通信 第16 期 報告書

untitled



[商品カタログ]ゼンリン電子地図帳Zi16

21 POINT 1 POINT 2 POINT 3

46

株式会社栃木銀行


514

untitled


ヤフー株式会社 株主通信VOL.16


Transcription:

( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1

M M v 0, v 1, v 2 v 0 v 0x v 0y v 0x v 0y v 0z M v 1x v 1y v 1z (1) v 2x v 2y v 2z, v 1 v 1x v 1y, v 2 v 2x v 2y (2) v 0z v 1z v 2z M 3 ( ) M v T 0 v T 1 v T 2 (3) M ( ) M 1 = M T M 1 M 1 3 v 0x v 1x v 2x ] M 1 v 0y v 1y v 2y [v 0 v 1 v 2 v 0z v 1z v 2z e 0, e 1, e 2 1 0 0 e 0 0, e 1 1, e 2 0 (5) 0 0 M 1 e 0 = v 0 M 1 e 1 = v 1 M 1 e 2 = v 2 (6) M v 0 = e 0 M v 1 = e 1 M v 2 = e 2 (7) v 0, v 1, v 2 e 0, e 1, e 2 ( +X w, +Y w, +Z w ) 1 (4) 3 3.1 v u v u = 1 v u v u u x u y u z (8) 2

( ) a = [a x a y a z ] T a v u = a/ a 3.2 v u M v u M v u = e 1 (9) v u = M 1 e 1 = v 1 (10) M 1 v 1 v u M (v 0 v 2 ) 3.3 v u M 4 2 2 4.1 ( ) +X c (X c X c 0 ) X w Y w X w 0 M v 1 = v u (11) v 2x = 0, v 2y = u z, v 2z = u 2 y + u 2 z u y u 2 y + u 2 z (12) v 0 = v 1 v 2 (13) 3

X c Z w Y w Y c Z c Z w v u ±X c +X c 4.2 ( ) +Z c Y w Z w Z w 0 M v 1 = v u (14) v 0x = u y u 2 x + u 2 y, v 0y = u x, v 0z = 0 (15) u 2 x + u 2 y v 2 = v 0 v 1 (16) Z c X w Y w X c Y c X w v u ±Z c +Z c 5 2 : M : M 6 2 v u v u X w, Y w, Z w Y w Y w v u X w, Z w v u v u 3 v u = 1 v u 1 S X w, Z w v u S 4

Y c S Y c Y w X w X w X w Z w v u X w Z w v u Z w Z w Z c X c Z c X c 2: v u X w, Y w, Z w 3: X w, Z w v u X w, Y w, Z w S X w, Z w v u X w, Z w 4 S X w, Z w S Y c X w Z w Z c X c 4: S 1 ( ) 5 X c +X c S +X w +Z w 2 (+X c X c ) 5

2 ( ) 6 +Z c Z c 2 5: 1 ( ) 7 ( 7 ) v a, v b v a v b v a, v b v a v b v a v b ( v a = v b ) ( ) v a v b ( v a = v b ) 6

6: 2 ( ) v b v a 7: v a v b 7

v a v b M SR (v a, v b ) n 2 xt + cos φ n x n y t n z sin φ n z n x t + n y sin φ M SR (v a, v b ) = n x n y t + n z sin φ n 2 yt + cos φ n y n z t n x sin φ (17) n z n x t n y sin φ n y n z t + n x sin φ n 2 zt + cos φ [n x n y n z ] T φ [n x n y n z ] T = v a v b sin φ (18) sin φ = v a v b (19) cos φ = v a v b (20) t = 1 cos φ (21) v a v b v b v a M SR (v a, v b ) 1 = M SR (v b, v a ) (22) v a, v b 1 k, l M SR (k v a, l v b ) = M SR (v a, v b ) (23) 8 8.1 (Fixed point theorem, Hairy ball theorem) f : S 2 S 2 f(p ) = P P S 2 P ( ) P f(p ) f(p ) = P 0 0 0 3 S X w, Z w X w S X w X w S 2 1 8

8.2 ( ) M 1. ( ) 2. v u +Y w +Y w e 1 M ( A ) M = M SR (v u, e 1 ) (24) M 1 M 1 = M SR (v u, e 1 ) 1 (25) = M SR (e 1, v u ) (26) e 1 v u 8 Y c 1 v u Y c Y c 8: - ( ) 9

8.3 ( ) (8.2) ( ) 1 Y c v r v t = v r (target vector) M 1. ( ) 2. v u v t 3. v t +Y w M ( A ) M = M SR (v t, e 1 ) M SR (v u, v t ) (27) M 1 = M SR (v u, v t ) 1 M SR (v t, e 1 ) 1 (28) = M SR (v t, v u ) M SR (e 1, v t ) (29) ( ) M SR (e 1, v t ) v r 9 Y c +Z c θ = 50 10 v r v u v r v r Y c θ Z c v r X c 9: v r 9 v p M p 10

10: - ( ) v u v u M 3 S X w, Z w X w, Z w v p v u M 1 = M SR (v p, v u ) M 1 p (30) M = M p M SR (v p, v u ) 1 (31) = M p M SR (v u, v p ) (32) 10 11

S X w ( Z w ) ( ) X w ( Z w ) 1. X w, Z w 2. (a) X w, Z w (b) X w, Z w 2 ( ) X w, Z w S X w, Z w 10.1 ( 1) ( ) 6 +Z c, Z c 11 S ( ) +Z w +Z w (+Z c ) λ ( ) ( 11 λ = π/3 ) v u X c Y c Z c +Z w +Z c v u ±Z c Z c Z w v u M 10.1.1 9 - ( ) M d M d M d +X w, +Z w v d, v e M d v T d v T u v T e (33) 12

11: ( 1) u z sin λ S M = M d 10.1.2 4.2 ( ) M g M g v g, v h +X w, +Z w M g v T g v T u v T h (34) ρ ( ) ρ = π sin 1 u z (35) λ 12 +Z w (+Z w ) v h ±ρ ρ M d v e v h cos ρ M = M d 10.1.3 v e 13 ρ, ρ v e v g 0 ρ = ρ 13

v g v h ρ +Z w N G v g ρ 0 OK v h ρ ρ N G OK 12: +Z w 13: ρ = ρ v e v h v u ρ M r cos ρ 0 sin ρ M r = 0 1 0 (36) sin ρ 0 cos ρ M M 1 = M 1 g M r (37) M = M 1 r M g (38) 10.2 ( 2) ( ) 8 Y c 14 S ( ) +Z w S +Y c P 1 P 1 +Z w (+Z c ) P 1 ( S ) λ ( ) ( 14 λ = π/2 ) v u +Y c +Y c +Z w +Z c v u Y c +Y c Z w v u M 10.2.1 9 - ( ) M d M d (33) u y cos λ S M = M d 14

14: ( 2) 10.2.2 8.2 - ( ) M g M g (34) ρ ( ) ρ = π λ cos 1 u y (39) +Z w 10.1 ( 1) 12 v e v h cos ρ M = M d 10.2.3 v e ( 1) 10.1.3 11 2 15

2 1 ( ) A A.1 M SR (v u, e 1 ) 8.2 M SR (v u, e 1 ) K 1 K 1 u 2 z + u y u x K 1 u x u z M SR (v u, e 1 ) = u x u y u z (40) K 1 u x u z u z K 1 u 2 x + u y K 1 = 1 u y u 2 x + u 2 z (41) u y 1 K 1 = 1 u y u 2 x + u 2 z = 1 u y 1 u 2 y = 1 1 + u y (42) A.2 M SR (v t, e 1 ) M SR (v u, v t ) 8.3 v r 9 v t = [0 cos θ sin θ] T M SR (v t, e 1 ) M SR (v u, v t ) K 2 u 2 1 + u 0 K 2 u 1 u s u c K 2 u 1 u c + u s M SR (v t, e 1 ) M SR (v u, v t ) = u x u y u z (43) K 2 u 1 u x K 2 u x u s u z K 2 u x u c + u y 16

u 0, u 1, u c, u s, K 2 u 0 = u y cos θ u z sin θ (44) u 1 = u y sin θ + u z cos θ (45) u c = u x cos θ (46) u s = u x sin θ (47) K 2 = 1 u 0 u 2 x + u 2 1 (48) u 0 1 K 2 = 1 u 0 u 2 x + u 2 = 1 u 0 1 1 u 2 = 1 (49) 0 1 + u 0 [1] ( ). 2007-267851 (2007-10-18) 17