Lecture note 10: II Osaka Institute of Technology

Similar documents
テクノ東京21 2003年6月号(Vol.123)

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

c 2006 Yoneda norimasa All rights reserved

6 19,,,

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

keisoku01.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


ver Web

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (


1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Microsoft Word - 11問題表紙(選択).docx

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1


r


301-A2.pdf


p12.dvi

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

7

untitled

01_教職員.indd


平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

aphp37-11_プロ1/ky869543540410005590

本文/扉1

プログラム


Program


Œ{Ł¶/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

日本内科学会雑誌第96巻第11号

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =

D 24 D D D

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

II


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

- - i



untitled


29




喀痰吸引

平成18年度「商品先物取引に関する実態調査」報告書


linearal1.dvi

untitled

ネットショップ・オーナー2 ユーザーマニュアル

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

ありがとうございました

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

公務員人件費のシミュレーション分析


橡hashik-f.PDF

198


1

新婚世帯家賃あらまし

05[ ]戸田(責)村.indd

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0

( ) ( )

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

08-Note2-web

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u


meiji_resume_1.PDF



微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

nsg02-13/ky045059301600033210

1 c Koichi Suga, ISBN

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

ii

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

p06.dvi

Transcription:

Lecture note 10: II Osaka Institute of Technology

, 2002. MATLAB, 1998. 1991. G. Goodwin, et al., Control System Design, Prentice Hall, New Jersey, 2001. Osaka Institute of Technology II 2

ẋ = Ax Bu y = Cx v u B ẋ 1 s A x C y u = Kx v K Osaka Institute of Technology II 3

ẋ = Ax B(Kx v) = Ax (BKx Bv) s 1 ẋ A B K u v C x y s 1 ẋ A B K v C x y B Osaka Institute of Technology II 4

ẋ = Ax (BKx Bv) = (Ax BKx) Bv s 1 ẋ A B K v C x y B s 1 ẋ A B BK v C x y Osaka Institute of Technology II 5

ẋ = (Ax BKx) Bv = (A BK)x Bv v B ẋ 1 s A BK x C y A BK v B ẋ 1 s x C y ABK Osaka Institute of Technology II 6

ẋ = (A BK)x Bu y = Cx A BK : K Osaka Institute of Technology II 7

(SISO) n ẋ = Ax Bu y = Cx Du A R n n B R n 1 C R 1 n D R Osaka Institute of Technology II 8

: 1. (A, B) 2. rank[b AB A n 1 B] = n 3. rank[λi A B] = n λ A (PBH Popov-Belevich-Hautus test) 4. K A BK ( ) 5. SISO Osaka Institute of Technology II 9

2. 1. 5. 3. 4. PBH Osaka Institute of Technology II 10

(1 4) (A, B) T R n n x = T ξ ξ = Ãξ Bu à = T 1 AT, B = T 1 B, 0 1 0 0 0 0 1 0 à =..... 0 0 0 1 α 0 α 1 α 2 α n 1, B = 0 0. 0 1 Osaka Institute of Technology II 11

(1 4) u = Kξ Ã B K {λ 1,, λ n } K = det ( si (Ã [ k0,, k n 1 ] ) B K) ( si (Ã ) B K) = s n (α n 1 k n 1 )s n 1 (α 1 k 1 )s (α 0 k 0 ) (s λ 1 ) (s λ n ) = s n a n 1 s n 1 a 1 s a 0 Osaka Institute of Technology II 12

(1 4) 2 α n 1 k n 1 = a n 1, α 1 k 1 = a 1, α 0 k 0 = a 0, k i (i = 0,, n 1) Ã B K {λ 1,, λ n } K Osaka Institute of Technology II 13

(1 4) K := KT 1 T ( det si (Ã ) B K) = det ( si (T 1 AT T 1 BKT ) ) = det [ T 1 (si (A BK)) T ] = det T 1 det (si (A BK)) det T Ã B K A BK K [ ] K = α n 1 a n 1 α 1 a 1 α 0 a 0 T 1 A BK {λ 1,, λ n } Osaka Institute of Technology II 14

(4 3) 4. ( ) 3. (PBH ) ( ) A λ C rank[λi A B] < n w C n w T (λi A) = 0, w T B = 0 K w T (λi A BK) = w T (λi A) w T BK = 0 A λ A BK K λ rank[λi A B] = n Osaka Institute of Technology II 15

(3 1) 3. (PBH ) 1. ( ) ( ) T x = T ξ, Ã = T 1 AT, B = T 1 B ξ = Ãξ Bu = Ã11 Ã 12 0 Ã 22 ξ B 1 u 0 Osaka Institute of Technology II 16

(3 1) z T Ã22 λ w T := [0 z T ] [λi à B] [ w T λi à B ] [ ] λi = 0 z T Ã11 Ã12 B 1 0 λi Ã22 0 [ ] = 0 λ z T z T à 22 0 = 0 Osaka Institute of Technology II 17

(3 1) w T := w T T 1 [ 0 = w T λi à B ] ] = w T λi T 1 AT T 1 B [ = w T T 1 λt AT ] ] B = w T λt AT B w T (λi A)T = 0, w T B = 0 T w T (λi A) = 0, w T B = 0 Osaka Institute of Technology II 18

(3 1) [ ] rank λi A B < n 3. Osaka Institute of Technology II 19

2. 3. ( ) Osaka Institute of Technology II 20

ẋ = Ax Bu y = Cx x = T ξ ((Ã11, B 1 ): ) ξ 1 ξ 2 = y = Ã11 Ã 12 0 Ã 22 ξ 1 [ C1 C2 ] ξ 1 ξ 2 B 1 Osaka Institute of Technology II 21 ξ 2 0 u

[ ] u = K 1 K 2 ξ 1 v ξ 2 u B 1 ξ 1 A 11 A 12 ξ 1 s 1 C 1 y C 2 v u B 1 K 1 ξ 1 A 11 s 1 A 12 ξ 1 C 1 C 2 y ξ 2 s 1 A 22 ξ 2 K 2 ξ 2 s 1 A 22 ξ 2 Osaka Institute of Technology II 22

ξ 1 = Ã11ξ 1 Ã12ξ 2 B 1 (K 1 ξ 1 K 2 ξ 2 v) = Ã11ξ 1 Ã12ξ 2 ( B 1 K 1 ξ 1 B 1 K 2 ξ 2 B 1 v) v u B 1 K 1 ξ 2 ξ 1 A 11 s 1 A 12 s 1 ξ 2 A 22 ξ 1 C 1 C 2 y v B 1 ξ 2 K 1 B 1 B 1 ξ 1 A 11 s 1 A 12 s 1 ξ 2 A 22 ξ 1 C 1 C 2 y K 2 K 2 Osaka Institute of Technology II 23

ξ 1 = Ã11ξ 1 Ã12ξ 2 ( B 1 K 1 ξ 1 B 1 K 2 ξ 2 B 1 v) = (Ã11 B 1 K 1 )ξ 1 (Ã12 B 1 K 2 )ξ 2 B 1 v v B 1 B 1 K 1 A 11 ξ 1 ξ s 1 1 C 1 y A 12 C 2 B 1 ξ s 1 2 ξ 2 A 22 v B 1 ξ 2 ξ 1 A B K 11 s 1 A 12B 1K2 C 2 s 1 1 1 A 22 ξ 1 ξ 2 C 1 y K 2 Osaka Institute of Technology II 24

ξ 1 ξ 2 = Ã11 B 1 K 1 Ã 12 B 1 K 2 0 Ã 22 ξ 1 ξ 2 B 1 0 u y = [ C1 C2 ] ξ 1 ξ 2 χ(s) = det(si Ã11 B 1 K 1 ) det(si Ã22) = 0 Osaka Institute of Technology II 25

χ(s) = det(si Ã11 B 1 K 1 ) det(si Ã22) = 0 det(si Ã11 B 1 K 1 ): det(si Ã22): Osaka Institute of Technology II 26

: ( ) Ackerman 1 (B R n 1 ) Osaka Institute of Technology II 27

Ackerman (Ackerman s formula) : 1 ẋ = Ax Bu, y = Cx Du u = Kx K 1. M c M 1 c k T ( 1 M c ) 2. χ d (s) = s n a n 1 s n 1 a 1 s a 0 3. K = k T (A n a n 1 A n 1 a 1 A a 0 I) Osaka Institute of Technology II 28

ẋ = y = 1 1 2 0 [ ] 1 0 x x 1 1 u Osaka Institute of Technology II 29

M c M o [ ] rank M c = rank B AB = rank 1 2 = 1 < 2 1 2 [ ] rank Mo T = rank C T A T C T = rank 1 1 = 2 0 1 Osaka Institute of Technology II 30

χ(s) = det si 1 1 2 0 = s 2 s 2 = (s 2)(s 1) Osaka Institute of Technology II 31

[ ] 1 G(s) = 1 0 si 1 1 1 2 0 1 1 [ ] = 1 0 s 1 1 (s 2)(s 1) 2 s 1 1 = s 1 (s 2)(s 1) = 1 s 2 s = 1 Osaka Institute of Technology II 32

: x = T ξ, T = 1 1 1 1 ξ = y = 2 1 0 1 [ ] 1 1 ξ ξ 1 0 u Osaka Institute of Technology II 33