Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Spa

Similar documents
MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

プラズマ核融合学会誌11月【81‐11】/小特集5

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic


Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Nosé Hoover 1.2 ( 1) (a) (b) 1:

空力騒音シミュレータの開発


Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL


dプログラム_1

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

食品工学.indb

4/15 No.

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

The Plasma Boundary of Magnetic Fusion Devices

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake


weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

研究成果報告書

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an



7-1 2007年新潟県中越沖地震(M6.8)の予測について

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

5b_08.dvi

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst


J. Jpn. Inst. Light Met. 65(6): (2015)

Table 1 Critical temperature, pressure, and density for widely used substances. Netsu Sokutei 31 (1)

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals


On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

30 論 文 鉄と鋼 Tetsu-to-Hagané Vol. 105 (2019) No. 1 速度論に基づく真空浸炭炉のマルチステップシミュレーション Multi-step Simulation of Vacuum-carburizing Reactor based on

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

第52回日本生殖医学会総会・学術講演会

02-量子力学の復習

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Microsoft Word - GPS2017.docx

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

Preliminary report on shock remanent magnetization measurement [1] cm 10 cm 8cm 8cm [2] [3] [1] Gattacceca 1 Superconducting

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

M2-10折 .indd

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

藤村氏(論文1).indd

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

r z m ε r ε θ z rθ

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

高密度荷電粒子ビームの自己組織化と安定性

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

The faint young Sun paradox Early Mars ( Ga) on Mars wet and warm climate? Valley networks(carr, 1996) The warm climate cannot be sustained (Ka

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)


206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *


Key Words: wavelet transform, wavelet cross correlation function, wavelet F-K spectrum, 3D-FEM

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

Transcription:

1539 2007 120-130 120 Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Space Science, Graduate School of Science, Osaka University (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [9] - $[14 $ 1 yukawa@ess.sci.osaka-u.ac.jp

121 - pa 1: Schematic picture of Vulcanian dynamics. [5, 3, 4] 2 - [6, 7, 8] [2] % 2.1 - - ( ) [9]

122 $\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{d}_{\text{ }}\mathrm{j}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{s}$ Lennard-Jones Lennard- $\text{ }2$ Jones : Geometry of the system. When we calculate physical quantities, we slice the system with a unit length. 3 $N$ 3 $\mathcal{h}=\sum_{1=1}^{n}\frac{\mathrm{p}_{i}^{2}}{2m_{1}}+\frac{1}{2}\sum_{i,j(i\neq j)}^{n}\alpha_{i}\alpha_{j}\phi( \mathrm{q}_{\mathfrak{i}}-\psi ),$ $(1)$ ( $L_{x}\cross L_{y}\mathrm{x}L_{z\text{ }}L_{i}$ ) $z$ $\phi(r)$ $\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{d}\text{ }\mathrm{j}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{s}12\text{ }6$ $x,$ $y$ $z$ $\phi(r)=4\epsilon\{(\frac{\sigma}{r})^{12}-(\frac{\sigma}{r})^{6}\}$, (2) $z$ $m_{i}$ } $m_{magma}=1$, [ $m_{gas}=0.1$ ( 2) $\epsilon_{\text{ }}$ Lennard Jones $\sigma$ 1 Boltzmann 1 $k_{b}$ /\mbox{\boldmath $\sigma$}3 $\text{ }\sigma\sqrt{m_{magma}}/\epsilon_{\text{ }}$ $\epsilon/\sigma^{3}$ Hoover $\alpha_{1}$ [10, 11, 12] 1 0.1 $.i= \frac{\partial \mathcal{h}}{\partial \mathrm{p}_{i}}$ 100 (3) $\dot{\mathrm{p}}_{i}=-\frac{\partial \mathcal{h}}{\partial \mathrm{q}_{1}}-\zeta \mathrm{p}_{1}$ (4) $\dot{\zeta}=\frac{1}{\tau}(\sum_{i\in A}\frac{\mathrm{p}_{i}^{2}}{2m_{i}}-\frac{3}{2}N_{A}T_{A})$ $\mathrm{p}_{i},$ $\mathrm{q}_{i}$ (5) $\sum_{:\in A}$ $N_{A},$ $T_{A}$

profile $\alpha$ $\alpha$ $(\mathrm{p}_{i})_{\alpha}$ $\mathrm{f}_{\alpha}^{1j}$ 123 $\tau$ $\zeta$ $\mathrm{p}\mathrm{a}$ $3$ $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\text{ }\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}$ : of number density (left) and local pressure (right): Horizontal 4 4.1 $\beta$ $\alpha,$ $x,$ $y,$ $z$ $i$, $i$ $\mathrm{q}_{\beta^{j}}^{1}$ $j$ \beta $i\text{ }$ $i$ $z$ 1 $\mathrm{v}(z)$ n(z) \rho (z) \Pi \alpha \beta (z) $z$ $\mathrm{v}(z)=\frac{\sum_{i\in z}\mathrm{p}_{i}}{\sum_{1\in z}m_{i}}$ (6) $n(z)= \frac{\sum_{:\in z}1}{l_{x}l_{y}}$ $\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}^{\text{ }}$ axis represents coordinate of explosion tion ( $z$ axis) and vertical axis is time. At time, $0$ $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\text{ }$ a diaphragm is removed. istic waves are guided by lines.. $\rho(z)=\frac{\sum_{i\in z}m_{i}}{l_{x}l_{y}}$ $\Pi_{\alpha\beta(Z)=\frac{1}{L_{x}L_{y}}\sum_{i\in z}\frac{(\mathrm{p}_{1})_{\alpha}(\mathrm{p}_{i})_{\beta}}{m_{i}}}$ $p(z)$ 1 $+ \frac{1}{2l_{x}l_{y}}.\sum_{*\in zo\mathrm{r}j\in z}f_{\alpha}^{i,j}q_{\beta}^{l,j}$ $p(z)= \frac{1}{3}\sum_{\alpha}\pi_{\alpha\alpha}(z)$ (7) $z$ $-(\mathrm{v}(z))_{\alpha}(\mathrm{v}(z))\rho\rho(z)$ 3 $L_{x}=40,$ $L_{y}=$ $40,$ $L_{z}=752$ 57600 $z$ 118400 $z$ $\sum_{1\in z}$

124 $0$ $z$ 40 $\mathrm{x}40\mathrm{x}40$ 57600 6400 2 $40\cross 40\cross 704$ 112000 0.8 pa 4: (Color on a web page[16]) Snapshots of $z$ 1 simulation: (Up) Snapshot at $t=40$. (Down) Snapshot at $t=170$. Parameters are identical $z$ to ones of Fig. 3. Eruption propagates to the left direction. Only particles originated from $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\text{ }$ the chamber are plotted; A darker ball sents a magma particle, and brighter one is a gas particle. At the initial condition $t=0$, magma and gas particles are uniformly mixed in the chamber. 120 4.2 $z$ $z$ $t=40$ 20 $t=170$ 4 ( 40 ) ( ) $t=40$ $(t=170)_{\text{ }}$ $z$

$P_{\mathit{9}}$ $\check{}\gamma_{\mathrm{l}}\text{ }\mathrm{b}$ 125 $\phi$ ( [13] ) $\underline{nrt}$ (12) $\phi=\frac{p_{g}}{\frac{nrt}{p_{\mathit{9}}}+\frac{1-n}{\rho_{l}}}=\frac{1}{1+\frac{1-n}{n}\frac{p_{\mathit{9}}}{p\iota RT}}$ 4.3 $p,$ $T$ $w,p_{\mathit{9}},$ Woods (1995) [6] Woods Woods Woods $\frac{\partial\rho}{\partial t}+w\frac{\partial\rho}{\partial z}=-\rho\frac{\partial\rho}{\partial z}$ (8) $\frac{\partial w}{\partial t}+w\frac{\partial w}{\partial z}=-\frac{1}{\rho}\frac{\partial p_{g}}{\partial z}$ (9) $\frac{1-n}{\rho_{l}}+\frac{nrt}{p_{\mathit{9}}}=\frac{1}{\rho}$ (10) $p_{\mathit{9}}( \frac{\phi}{\rho})^{\gamma_{n}}=\omega nst$. (11) $t,$ $z$ $t$ $z$ $p$ $w$ $\{\frac{\partial}{\partial l}+(w\pm a(p))\frac{\partial}{\partial z}\}$ WoOds $\cross(w\pm\int^{\rho}\frac{a(\rho )}{p},d\rho )=0$ (13) $n$ $a(\rho)$ $\rho_{l}$ $R$ $a^{2}(p)=\gamma_{m}p_{\mathit{9}}/(p\phi)$ $T$ Woods \iota $n$ $\rho\iota$ $w\pm a$ $w \pm\int^{\rho}\frac{a(p )}{\beta}d\rho $ } 4 $\text{ }oe\text{ }\mathrm{a}\mathrm{e}\upsilon;\text{ }$

126 Woods 5 T(z) (v(z))z p(z) $\rho(z)$ $v(z)= \frac{\sum_{i\in z}\mathrm{p}_{i}}{\sum_{i\in z}m_{i}}$ (14) $T(z)= \frac{1}{3}\frac{1}{\sum_{1\in z}1}\sum_{:\in z}m_{i} \mathrm{v}:-v(z) ^{2}$ (15) $\text{ }5$ : Spatial profiles of temperature, velocity $(z)$, pressure, and mass density at $t=15$ : System size is taken to be $L_{x}=32,$ $L_{y}=32,$ $L_{z}=$ $408$ and size of magma chamber is 32 $\mathrm{x}32$ x200. Initial mass density and temperature are taken to be 1 and 2, respectively. We can recognize characteristic regions. Rom right, initial equilibrium state, hot gas region, cold gas region, expanding wave region, and initial equilibrium state again are observed. These regions are indicated by gray rectangular. $L_{x}=L_{y}=$ $32,$ $L_{z}=408$ 32 $\mathrm{x}32\mathrm{x}200$ 1 10% $z$ 5 $t=15$ $z$ $z=200$ $z=408$ $T=0.8$ $T=2_{\text{ }}$ $\text{ }\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}$ Equilibrium 240 - $\ulcorner_{\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{g}\mathrm{a}\mathrm{s}_{\lrcorner}}$

127 $6$ : (Color on a web page[16]) Snapshots of large simulation: (top) Snapshot at $t=40$. 5 (second) Snapshot at $t=170$. (third) Snapshot at $t=300$. (forth) Snapshot at $t=400$. (1) (bottom) Snapshot at $t=500$. Eruption propagates to the left direction. A darker ball rep- (2) ( ) (3) resents a magma particle, and brighter one is a gas particle. At the initial condition $t=0$, ( ) (4) magma and gas particles are uniformly mixed (5) in the chamber. 6 $L_{x}=L_{y}=120,$ $L_{z}=864$ (4) 3110400 794880 240 (2) $t=300$ 4.4 -

128 H 4.5 [15] $\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{d}\text{ }\mathrm{j}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{s}$ Lennard-J0nes 7 Lennard-Jon6-5 [1] Lennard-Jones 2004 [2] 3 2003 [3] M. Ichihara, D. Rittel, and B. Sturtevant: Fragmentation of a porous viscoelastic

$\mathrm{u}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{y}\mathrm{u}\mathrm{k}/\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{o}/$ 129 material: Implications to magma fragmentation, J. Geophys. Res. 107(BIO), 2229, doi:10.1029/2001jb000591, (2002). [4] O. Spieler, D. B. Dingwell, and M. Alidibirov: Magma fragmentation speed: an experimental determination, J. Volcanol. Geotherm. Res 129, $109\text{ }123$, (2004). [16] web $\text{ }$ http: $//\mathrm{b}\mathrm{o}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}.\mathrm{e}\mathrm{s}\mathrm{s}$.sci.osaka- [5] B. Cagnoli, A. Barmin, O. Melnik, R. S. J. Sparks: Depressurization of fine powders in a shock tube and dynamics of fragmented magma in volcanic conduits, Earth Planet. Sci. Lett. 204, 101-113, (2002). [6] A W Woods: A model of vulcanian $\mathrm{e}\mathrm{x}\text{ }$ plosioo, Nucl. $Eng$. Design, 155, 345-357, (1995). [7] O. Melnik: Dynamics of two-phase conduit $\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\text{ }\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}$ flow of gas-saturated magma: large variations of sustained explosive eruption intensity, Bull. Volcanol. 62, 153-170, (2000). [8] O. Melnik and R. S. J. Sparks: Nonlinear dynamics of lava dome extrusion, Nature 402, $37\text{ }41,$ $(1999)$. [9] T. Ishiwata, T. Murakami, S. Yukawa, and N. Ito: Particle Dynamics Simulations of the $\mathrm{n}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{e}\mathrm{r}\text{ }\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{s}$flow with Hard Disks, Int.. $J$ Mod. Phys., $\mathrm{c}15$ $1413\text{ }$ $1424$, (2004). $\mathrm{e}\mathrm{c}\mathrm{u}\iota_{\mathrm{a}\mathrm{r}\text{ }}\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{s}$ [10] S Nos\ e: $u\mathrm{a}\mathrm{m}\mathrm{o}$] method for simulations in the canonical ensemble, $Mol$. Phys. 52, 255, (1984). [11] S. Nos\ e: A unified formulation of the constant temperature meth- $\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\text{ }\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{s}$ $\mathrm{o}\mathrm{d}\mathrm{s}$, J. Chem. Phys. 81, 511, (1984). [12] W G. Hoover: Canonical dynamics: $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\text{ }$ librium phase-space distributions, Phys. Rev. A31, 1695, (1985). [13] 1994 [14] T. Murakami, T. Shimada, S. Yukawa, and N. Ito: Energy Transport in Multiphase System, Joumal of the Physical Society of Japan72, 1049-1056, (2003). [15] P. C. Hohenberg and B. I. Halperin: Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, $436\text{ }479$, (1977).

130 ou 7: (Color on a web page[16]) Snapshots of physical quantities on $xz$ plane at $t=210$ : $\mathrm{t}\mathrm{e}\mathrm{m}\text{ }$ (top) Number density profile (second) perature profile. (bottom) Velocity field profile. A left view is of magma component and a right view is of gas component.