(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

Size: px
Start display at page:

Download "(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]."

Transcription

1 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2 ( ) 1 $T_{e}(x)(x$ 1 ) 1/4 1 1/4 $(a)$ $(b)$

2 113 ( ) [5] [6-9] $a_{e}(x)$ $\Omega_{\mathrm{e}}(x)[=(a_{e}/T_{e})\mathrm{d}T_{\mathrm{e}}/\mathrm{d}x]$ \Omega e(x) 2 vb -? [9]

3 $P\mathrm{o}$ $10^{3}$ 2 2 $\mathrm{k}\mathrm{s}-\text{ }[10]\text{ }$ L $\text{ }T_{e}(L)\text{ }$ ( 2 ) $\rho_{e}(x)$ $S_{\mathrm{e}}(x)$ $e$ $-$ $\frac{\partial\rho }{\partial t}+\frac{\partial}{\partial x}(\rho_{e}u )=\frac{2}{r}\rho_{\mathrm{e}}v_{b}$ (31) $\rho_{e}\frac{\partial u }{\partial t}=-\frac{\partial p }{\partial x}$ (32) $\frac{\partial S }{\partial t}+u \frac{\mathrm{d}s_{e}}{\mathrm{d}x}=0$ (33) $\rho $ $u $ $p $ $S $ x ( e ( po))

4 $\frac{\partial^{-\frac{1}{2}}u}{\partial t^{-\perp}2}$ 115 $v_{b}$ ( 2 ) $\frac{p}{p0}=\frac{\rho T}{\rho_{e}T_{e}}$ $\frac{p}{p0}=(\frac{\rho}{\rho_{e}})^{\gamma}\exp(\frac{s-s_{e}}{c_{v}})$ (34) $\gamma(=c_{\mathrm{p}}/c_{v})$ $c_{\mathrm{p}}$ $\mathrm{d}s_{e}/\mathrm{d}x$ $(\mathrm{q}/t_{e})\mathrm{d}t_{e}/\mathrm{d}x$ ( ) (34) $\frac{p }{p_{0}}=\frac{d}{\rho_{e}}+\frac{t }{T_{e}}$ $\frac{p }{p_{0}}=\frac{\gamma\beta}{\rho_{e}}+\frac{s }{c_{v}}$ (35) $[24]$ $v_{b}$ $u $ $v_{b}=c \sqrt{\nu_{\mathrm{e}}}\frac{\partial^{-\frac{1}{2}}}{\partial t^{-_{2}}\iota}(\frac{\partial u }{\partial x})+c_{t^{\frac{\sqrt{\nu_{\mathrm{e}}}}{t_{e}}\frac{\mathrm{d}t_{e}}{\mathrm{d}x}\frac{\partial^{-}\tau u 1}{\partial t^{-\#}}}}$ (36) C CT Pr $C=1+ \frac{\gamma-1}{\sqrt{pr}}$ $C_{T}= \frac{1}{2}+\frac{1}{\sqrt{pr}+pr}$ (37) $\nu_{e}(x)(=\mu/\rho_{e})$ $-1/2$ [3] \equiv f-t\infty -- $\sqrt$ u(tx-\tau \tau )d\tau (38) (36) (31) u (32) p $\frac{\partial^{2}p }{\partial t^{2}}-\frac{\partial}{\partial x}(a_{\mathrm{e}}^{2}\frac{\partial p }{\partial x})+\frac{2a_{\mathrm{e}^{\sqrt{\nu_{e}}}}^{2}}{r}\frac{\partial^{-1}2}{\partial t^{-\}}}[c\frac{\partial^{2}p }{\partial x^{2}}+\frac{(c+c_{t})\mathrm{d}t_{e}\partial p }{T_{e}\mathrm{d}x\partial x}]=0$ (39) $\text{ }a_{e}(x)\text{ \sqrt{\gamma po/\rho_{e}}\text{ }$ I=P(x)e $(1-2C \delta_{\mathrm{e}})a_{e}^{2}\frac{\mathrm{d}^{2}p}{\mathrm{d}x^{2}}+[1-2(c+c_{t})\delta_{e}]\frac{a_{\mathrm{e}}^{2}}{t_{\mathrm{e}}}\frac{\mathrm{d}t_{e}}{\mathrm{d}x}\frac{\mathrm{d}p}{\mathrm{d}x}+\omega^{2}p=0$ (310) $P$ $\delta_{e}$ $\delta_{e}(x)=\frac{(1-\mathrm{i})}{r}\sqrt{\frac{\nu_{e}}{2\omega}}=\frac{1}{r}(\frac{\nu_{e}}{\mathrm{i}\omega})^{1/2}$ (311) $( \delta_{e} \ll 1)$ (310) 1 [6]

5 116 $x=0$ $P=0$ ( ) $x=l$ dp/dx=0 [11] $\frac{dp}{\mathrm{d}x}=-\frac{(\gamma-1)}{\sqrt{pr}}\frac{\sqrt{\nu_{e}}}{a_{e}^{2}}(\mathrm{i}\omega)^{3/2}p$ (312) 32 (310) $P$ $F=ZP(\text{ }$ $Z=(1-K\delta_{e})a_{e}/a_{0}$ $K$ $a_{0=}a_{\mathrm{e}}(0))$ (310) $X \frac{\mathrm{d}}{\mathrm{d}_{x}}(x\frac{\mathrm{d}f}{\mathrm{d}_{x}})+mx\frac{\mathrm{d}}{d_{x}}(\frac{a_{e}}{t_{e}}\frac{\mathrm{d}t_{e}}{d_{x}}f)+\mathrm{y}f=0$ (310) $\delta_{\mathrm{e}}$ (313) $X$ $K$ $M$ $\mathrm{y}$ $\Omega_{e}$ 1 $X=(1-C\delta_{e})a_{e}$ $\mathrm{y}=^{\omega^{2}}+c_{t}\delta_{\mathrm{c}}(a_{e}\mathrm{d}\omega_{e}/\mathrm{d}_{x}+\omega_{e}^{2})$ $K=\mathit{2}C_{T}-C$ $M=-1/\mathit{2}$ (310) $\Omega_{e}$ - $\Omega_{e}$ $K$ $\Omega_{e}$ $2a_{0}\lambda/L$ $\lambda$ ( ) (314) $\frac{t_{\mathrm{e}}}{t_{0}}=(1+\lambda\frac{x}{l})^{2}$ $X$ $\xi$ $X\mathrm{d}/dx=a_{0}\mathrm{d}/d\xi$ $\mathrm{y}$ $C_{T}\delta_{e}\Omega_{\mathrm{e}}^{2}$ $\xi$ $C_{T}\delta_{e}\Omega_{e}^{2}$ \mbox{\boldmath $\delta$} -- $F=B^{+} \mathrm{e}^{\mathrm{i}k^{+}\xi}+b^{-}\mathrm{e}^{\mathrm{i}k^{-}\xi}+\mathrm{i}\frac{2c_{t}}{c}\frac{\lambda b}{l}(\frac{b^{+}}{k^{+}}\mathrm{e}^{\mathrm{i}k^{+}\xi}+\frac{b^{-}}{k^{-}}\mathrm{e}^{\mathrm{i}k^{-}\xi})\mathrm{e}^{\lambda}\mathrm{r}^{\xi}$ (315) $B^{\pm}$ $b=c\delta_{e}(0)$ $\sigma$ $\omega L/a_{0}$ $\psi=(\sigma^{2}-\lambda^{2}/4)^{1/2}$ $k^{\pm}l=-\mathrm{i}\lambda/\mathit{2}\pm\psi$ ( ) $\xi$ $x$ $\xi=\int_{\mathit{0}}^{x}\frac{a_{0}}{(1-c\delta_{e})a_{e}}dx=\frac{l}{\lambda}[\log\zeta+b(\zeta-1)]+o(b^{2})$ (316) $\zeta=1+\lambda x/l$ $x=l$ $\xi$ \xi =\xi L (312) df/d\xi $\frac{df}{\mathrm{d}\xi}=\{\frac{\lambda}{l}[1-\frac{2c_{t}}{c}(1+\lambda)b]+(1-\frac{1}{c})\frac{r\sigma^{2}}{l^{2}}b\}f+o(b^{2})$ (317)

6 \frac{e^{\mathrm{i}k^{+}\xi_{l}}+\mathrm{e}^{\mathrm{i}k\xi_{l}}}{e^{\mathrm{i}k^{+}\xi_{l}}-\mathrm{e}^{\mathrm{i}k\xi_{l}}}=)=w$ 117 \xi =0 F=0 B\pm izb $( $W= \frac{\lambda}{\mathit{2}}-\frac{2c_{t}}{c}\lambda b+(1-\frac{1}{c})\frac{r}{l}\sigma^{2}b$ (318) $barrow \mathrm{o}$ 1/4 4 $\sigma$ (318) $e^{\lambda 1L/L}$ (316) $\xi_{l}$ $\log(1+\lambda)+\lambda b=-\mathrm{i}\frac{\lambda}{2\psi}\log(\frac{w+\mathrm{i}\psi}{w-\mathrm{i}\psi})$ 3 (41) 41 b b $\log(1+\lambda)+\lambda b=-\cdot\frac{\lambda}{2\psi}[\log(\frac{1+2\mathrm{i}\psi/\lambda}{1-2\mathrm{i}\psi/\lambda})\pm 2\mathrm{i}n\pi]$ $+ \frac{\lambda}{\lambda^{2}/4+\psi^{2}}[\frac{2c_{t}}{c}\lambda-(1-\frac{1}{c})\frac{r}{l}\sigma^{2}]b+o(b^{2})$ (42) $n$ (b=o) \psi $\log[(1+2\mathrm{i}\psi/\lambda)/(1-2\mathrm{i}\psi/\lambda)]=2\mathrm{i}\tan^{-1}$ (2\psi /\mbox{\boldmath $\lambda$}) b $\cot[\frac{\psi}{\lambda}\log(1+\lambda)\pm n\pi]=\frac{\lambda}{2\psi}$ (43) - $\psi$ $\psi=\mathrm{i}\phi$ $1+ \lambda=(\frac{1+\mathit{2}\phi/\lambda}{1-2\phi/\lambda})^{\lambda/2\phi}$ (44)

7 $\lambda$ 118 (43) (44) $\mathrm{e}^{2}-1$ \mbox{\boldmath $\lambda$} \mbox{\boldmath $\sigma$} \mbox{\boldmath $\lambda$} \mbox{\boldmath $\sigma$} C CT 3 \mbox{\boldmath $\sigma$} $T_{L}/T_{0}[=(1+\lambda)^{2}]$ $\lambdaarrow\infty$ $\sigma^{2}=\lambda+\mathit{2}\log\lambda-3+\mathrm{o}(1)$ b\rightarrow 0 $\lambdaarrow 0$ $\sigmaarrow\pi/2$ (42) b $b\propto 1-\mathrm{i}$ $b^{1}$ $b^{\mathit{0}}$ (42) \psi $\lambda^{2}/4+\psi^{2}=\sigma^{2}=c\lambda$ $c= \frac{2c_{t}}{c+(c-1)r/l}$ (45) $\lambda^{2}/4-\phi^{2}=\sigma^{2}=c\lambda$ (46) c R/L 3 $(C=147 C_{T}=114)$ $(C=182 C_{T}=117)$ (45) (46) R/L=005 (b\rightarrow 0) 42 (41) b l b $b=(1-\mathrm{i})\zeta$ $\text{ })\zeta=\frac{\zeta_{0}}{\sqrt{\sigma}}$ $\zeta_{0}=\frac{c}{r}\sqrt{\frac{\nu_{0}l}{2a_{0}}}$ (47) $W= \frac{1}{2}\lambda[1-(\alpha+\mathrm{i}\beta)]$ (48) $\alpha=-\beta=[\frac{4c_{t}}{c}-2(1-\frac{1}{c})\frac{r}{l}\frac{\sigma^{\mathrm{a}}\prime}{\lambda }]\zeta$ (49) $\log(\frac{w+\mathrm{i}\psi}{w-\mathrm{i}\psi})=\log[==\frac{1\alpha \mathrm{i}(\beta-2\psi/\lambda)}{1\alpha \mathrm{i}(\beta+2\psi/\lambda)}]$ (410)

8 $\zeta_{0}$ $T_{L}/T_{\mathit{0}}$ $[=(1+\lambda)^{2}]$ $\sigma$ \psi =0 \mbox{\boldmath $\sigma$}=\mbox{\boldmath $\lambda$}/2 (a) (b) $(\zeta_{0}arrow 0)$ $\psi$ (41) $\log(1+\lambda)+\lambda\zeta$ $- \frac{\lambda}{2\psi}[-\mathrm{t}\bm{\mathrm{t}}^{-1}(\frac{\beta-2\psi/\lambda}{1-\alpha})+\tan^{-1}(\frac{\beta+2\psi/\lambda}{1-\alpha})\pm 2n\pi]=0$ (411) $- \lambda\zeta+\frac{\lambda}{4\psi}\log[=\frac{(1\alpha)^{2}+(\beta-2\psi/\lambda)^{2}}{(1\alpha)^{2}+(\beta+2\psi/\lambda)^{2}}]=0$ (412) $\psi$ $SS $\log(1+\lambda)+\lambda\zeta+\frac{\lambda}{4\phi}\log[=\frac{(1\alpha-2\phi/\lambda)^{2}+\beta^{2}}{(1\alpha+2\phi/\lambda)^{2}+\beta^{2}}]=0$ (413) $- \lambda\zeta+\frac{\lambda}{2\phi}[-\tan^{-1}(\frac{\beta}{1-\alpha-2\phi/\lambda})+\tan^{-1}(\frac{\beta}{1-\alpha+2\phi/\lambda})\pm 2n\pi]=0$ (414) \mbox{\boldmath $\zeta$}o $\zeta_{0}\text{ }$ 4 $T_{L}/T_{0}\approx 7897(\zeta_{0}\approx 047)$ /T0 $\approx 8213(\zeta_{0}\approx 054)$ $n$ 1 2 $\zeta_{0}$ 5 $R/\sqrt{\nu_{0}/\omega}(=R/\sqrt{\nu_{0}L/a_{0}\sigma})$ $\ovalbox{\tt\small REJECT}(L)/T_{\mathrm{e}}(\mathrm{O})$ $[=(1+\lambda)^{2}]$

9 120 5 $R/\sqrt{\nu_{0}}/\omega(=R/\sqrt{\nu_{0}L}/a_{0}\sigma)$ (a) $T_{L}/T_{\mathit{0}}[=(1+\lambda)^{2}]$ $(b)$ \mbox{\boldmath $\sigma$} 6 \mbox{\boldmath $\sigma$} \mbox{\boldmath $\sigma$} $R/(\nu_{0}/\omega_{\mathrm{r}})$ $\omega_{f}$ $\omega$ ( ) 5 $[710]$ 5 6 \mbox{\boldmath $\sigma$} $R/(\nu_{0}/\omega_{f})$

10 tube in [9] ( b2 ) [1] RAYLEIGH LORD 1945 The theory of sound Vol2 Dover publications [2] [3] [4] SUGIMOTO N &TSUJIMOTO K 2002 Amplification of energy flux of nonlinear acoustic waves in a gas-filled tube under an axial temperature gradient J Fluid Mech [5] TACONIS K W BEENAKKER J J M NIER A O C &ALDRICH L T 1949 $\mathrm{h}\mathrm{e}^{3}$ $\mathrm{h}\mathrm{e}^{4}$ Measurements concerning the vapour-liquid equilibrium of solutions of below $219^{\mathrm{o}}\mathrm{K}$ Physica [6] ROTT N 1969 Damped and thermally driven acoustic oscillations in wide and narrow tubes Z Angew Math Phys [7] Rorr N 1973 Thermally driven acoustic oscillations Part II stability limit for helium Z Angew Math Phys [8] ROTT N 1980 Thermoacoustics $Adv$ Appl Mech [9] ROTT N 2001 Linear thermoacoustics Proc 1st Intl Workshop on Thermoacoustics Technische Universiteit Eindhoven and the Acoustical Society of America 1-63 [10] YAZAKI T TOMINAGA A &NARAHARA Y 1980 Experiments on thermally driven acoustic oscillations of gaseous helium J Low Temp Phys [11] SUGIMOTO N &YOSHIDA M Marginal instability for thermoacoustic osciltioo of gas in $\mathrm{a}$ $J$ Fluid Mech

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{ 1454 2005 111-124 111 Rayleigh-Benard (Kaoru Fujimura) Department of Appiied Mathematics and Physics Tottori University 1 Euclid Rayleigh-B\ enard Marangoni 6 4 6 4 ( ) 3 Boussinesq 1 Rayleigh-Benard Boussinesq

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: 129-138 Issue Date 2006-02 URL http://hdl.handle.net/2433/48126 Right Type Departmental Bulletin

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c} Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu \mathrm{m}_{\text{ }}$ 1453 2005 85-100 85 ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu 05\sim 1 $2\sim 4\mu \mathrm{m}$ \nearrow $\mathrm{a}$

More information

兵庫県立大学学報vol.17

兵庫県立大学学報vol.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 School of Human Science and Environment

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

第6章_田辺.PDF

第6章_田辺.PDF ( ) ( ) ( ) Tube . MGLAB 1.5 mm ( ) NS u u x u u u u = u + u ( ) ( u + u ) u u u u = u + u x x x + NS u ( ρ s ρ ) g a F R = αv 0 FR V a a a k0 k /0 MGLAB - ( ) NS CPU khz 1 10 5 NS 1 ga ARFAcoustic Radiation

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1 $\Downarrow$ $\Downarrow$ 812 1992 67-93 67 Cahn-Hilliard (Daisuke Furihata (Tomohiko Onda 1 (Masatake Mori Cahn-Hilliard Cahn-Hilliard ( $[1]^{1}$ reduce ( Cahn-Hilliard ( Cahn- Hilliard Cahn-Hilliard

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Spa

Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Spa 1539 2007 120-130 120 Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Space Science, Graduate School of Science, Osaka University

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: asakuran@fusion.naka.jaeri.go.jp The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理)

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理) $\dagger$ 1768 2011 125-142 125 2 * \dagger \ddagger 2 2 $JEL$ : E12; E32 : 1 2 2 $*$ ; E-mail address: tsuzukie5@gmail.com \ddagger 126 Keynes (1936) $F\iota$ Chang and Smyth (1971) ( ) Kaldor (1940)

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付け (高レイノルズ数の流れを記述するモデルの数理)

ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付け (高レイノルズ数の流れを記述するモデルの数理) 数理解析研究所講究録第 2048 巻 2017 年 26-30 26 ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付けシエフイールド大学数学統計学教室大木谷耕司 (Koji Ohkitani) School of Mathematics and Statistics The University of Sheffield I. INTRODUCTION 非圧縮性流体に対する Navier

More information

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N} 745 1991 220-231 220 - - (Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 34 ) $O(1)$ $O(1)$ 5 6 7 $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}$ ( $N$ ) ( Reynolds $Re$ ) Knudsen (1) ( Stokes ) ;(2)

More information

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri 1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: 110-117 Issue Date 2011-01 URL http://hdl.handle.net/2433/170468 Right Type Departmental Bulletin Paper

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: Issue Date

溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: Issue Date 溝乱流における外層の乱れの巨視的構造に関するモデル Titleシミュレーション ( 乱れの発生, 維持機構および統計法則の数理 ) Author(s) 奥田, 貢 ; 辻本, 公一 ; 三宅, 裕 Citation 数理解析研究所講究録 (2002), 1285: 92-99 Issue Date 2002-09 URL http://hdl.handle.net/2433/42433 Right

More information

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E 949 1996 128-138 128 (Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1 $-$ -i Fearn Mullin&Cliffe (1990) $E=3$ $Re_{C}=4045\pm 015\%$ ( $Re=U_{\max}h/2\nu$ $U_{\max}$ $h$ ) $-t$ Ghaddar Korczak&Mikic

More information

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information

サイバネットニュース No.121

サイバネットニュース No.121 2007 Spring No.121 01 02 03 04 05 06 07 08 09 10 12 13 14 18 01 02 03 04 05 06 07 L R L R L R I x C G C G C G x 08 09 σ () t σ () t = Sx() t Q σ=0 P y O S x= y y & T S= 1 1 x& () t = Ax() t + Bu() t +

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

Title 密度非一様性をともなった磁気流体における電流渦層の非線形発展 ( 非線形波動現象の数理と応用 ) Author(s) 松岡, 千博 Citation 数理解析研究所講究録 (2014), 1890: Issue Date URL

Title 密度非一様性をともなった磁気流体における電流渦層の非線形発展 ( 非線形波動現象の数理と応用 ) Author(s) 松岡, 千博 Citation 数理解析研究所講究録 (2014), 1890: Issue Date URL Title 密度非一様性をともなった磁気流体における電流渦層の非線形発展 ( 非線形波動現象の数理と応用 ) Author(s) 松岡, 千博 Citation 数理解析研究所講究録 (2014), 1890: 124-135 Issue Date 2014-04 URL http://hdl.handle.net/2433/195774 Right Type Departmental Bulletin

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information