多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

Size: px
Start display at page:

Download "多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)"

Transcription

1 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury)

2 49 [9] Navier-Stokes $\rho(\frac{\partial v}{\partial t}+v\cdot\nabla v)=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)_{:}$ $( \frac{\partial\rho}{\partial t}+v\cdot\nabla\rho)=-\rho\nabla\cdot v$ $( or\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho v)=0)$ $\rho=\rho(p)$. $\rho$ $vp$ $\eta $ $\eta$ $\rho_{0}\frac{\partial v}{\partial t}=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)$ (2.1) $\frac{1}{k_{f}}\frac{\partial p}{\partial t}=-\nabla\cdot v$ (2.2) $\rho_{0}=\rho(p_{0})$ $\frac{1}{k_{f}}=\frac{1}{\rho}\frac{\partial\rho}{\partial p} _{p_{o}}$ (2.3) Stokes 2 $K_{f}$

3 $\lambda$ 50 $u$ $\mu$ $\hat{\epsilon}$ $\hat{\sigma}$ Lam\ e $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}=0$ (2.4) $\hat{\sigma}=2\mu\hat{\epsilon}+\lambda(i;\hat{\epsilon})i$ (2.5) $\hat{\epsilon}=\{(\nabla u)+(\nabla u)^{t}\}/2$ (2.6) 1 Navier 2 Hooke Navier 2.2 Darcy $q$ Darcy $q+ \frac{k}{\eta}\nabla p=0$ (2.7) $k$ $\eta$ (porocity) $\phi$ $v$ $q$ porocity $q=\phi v$ (2.8) $\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot(\phi\rho_{f}v)=0$ $q$ $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot q=0$ (2.9) $\frac{\phi}{k_{f}}\frac{\partial p}{\theta t}+\nabla\cdot q=0$

4 51 $q+ \frac{k}{\eta}\nabla p=0$ (210) $\frac{\phi}{k_{f}}\frac{\partial p}{\partial t}+\nabla\cdot q=0$ (211) Darcy 2.3 Biot Darcy Navier Biot [2]. Biot [3][8][5]. $(\hat{\sigma}\hat{\epsilon})$ $(p \phi)$ $\Psi_{s}=\Psi_{s}(\hat{\epsilon} \phi)$ (212) $d\psi_{s}=\hat{\sigma}$ : $d\hat{\epsilon}+pd\phi$ (213) $G_{s}=\Psi_{s}-p\phi$ (214) $G_{s}=G_{s}(_{\vee} \hat{\epsilon}p);\hat{\sigma}=\frac{\partial G_{s}}{\partial\hat{\epsilon}}(\hat{\epsilon}p);\phi=-\frac{\partial G_{s}}{\partial p}(\hat{\epsilon}p)$ (215) $d\sigma_{i_{\dot{j}}}=\frac{\partial\sigma_{ij}}{\partial\epsilon_{kl}}d\epsilon_{kl}+\frac{\partial\sigma_{ij}}{\partial p}dp$ $= \frac{\partial^{2}g_{s}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}d\epsilon_{kl}+\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}dp$ $d\phi=\frac{\partial\phi}{\partial\epsilon_{ij}}d$ $+ \frac{\partial\phi}{\partial p}dp$ $=- \frac{\partial^{2}g_{s}}{\partial\epsilon_{ij}\partial p}d\epsilon_{ij}-\frac{\partial^{2}g_{s}}{\partial p\partial p}dp$

5 $\lambda$ 52 $C_{-kl} \equiv\frac{\partial^{2}g_{8}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}$ $b_{ij} \equiv-\frac{\partial^{2}g_{8}}{\partial\epsilon_{ij}\partial p}=-\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}$ $\frac{1}{k_{\phi}}\equiv-\frac{\partial^{2}g_{s}}{\partial p\partial p}$ Cijkl $=\lambda\delta_{ij}\delta_{kt}+\mu(\delta_{ik}\delta_{jl}+\delta_{it}\delta_{jk})$ $b_{ij}=b_{w}\delta_{ij}$ $d\hat{\sigma}=d\hat{\sigma}_{s}-b_{w}$dpi (2.16) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ $\mu$ $d\phi=b_{w}\nabla\cdot du+\frac{1}{k_{\phi}}dp$ (2.17) Lam\ e $B_{w}$ $K_{\phi}$ Biot-Wilhs [3] Biot-Willis (217) $\phi$ (2.9) $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}=\frac{\partial\phi}{\partial t}+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $=(B_{w} \nabla\cdot\frac{\partial u}{\partial t}+\frac{1}{k_{\phi}}\frac{\partial p}{\partial t})+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $\approx B_{w}\nabla\cdot\frac{\partial u}{\partial t}+(\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}})\frac{\partial p}{\partial t }$ $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.18) $\frac{1}{k}\equiv\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}}$ (2.19) $\phi_{0}$ $K $ Navier Hooke (2.5) Hooke (216) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}_{s}+b_{w}\nabla p=0$ (2.20) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.21)

6 53 Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.22) $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{u\prime}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.23) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}+\underline{b_{w}\nabla p}=0$ (2.24) Biot $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.25) Darcy Navier $B_{w}\nabla\cdot u$ $B_{w}\nabla p$ $B_{v)}$ quasi-static Biot $\rho$ $1/K $ quasi-static Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.26) $\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.27) $-\nabla\cdot\hat{\sigma}+b_{w}\nabla p=0$ (2.28) $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$. (2.29) 3 quasi-static Biot quasi-static Biot $\Omega$ 1

7 $r.\backslash _{:}:i$ $!^{:}$ $ $ $\Omega=\{(xy) x <\frac{l_{x}}{2}0<y<l_{y}\}$ $ $ $\Gamma_{2}=\{(xy)\in\partial\Omega x >\frac{l_{x}}{5}y=l_{y}\}$ 54 $y\cdot\frac{111fll1^{\triangleleft 0}\ulcorner}{}$ :: :: :.:!1 ::.!: $\Gamma_{3}=\partial\Omega\backslash :: :: : $\Gamma_{1}=\{(xy)\in\partial\Omega x \leq\frac{l_{x}}{5}y=l_{y}\}$ : (\Gamma_{1}\cup\Gamma_{2})$. $r\cdot oi.:::x\overline{--\omega J2nx\cdot*t}x\prime 2$ 1 $x\in\partial\omega$ $p(xt)=0$ $\sigma_{yy}(xt)=-\sigma_{0}$ $x\in\gamma_{1}$ $\sigma_{yy}(xt)=0$ $x\in.\gamma_{2}$ $\sigma_{xy}(x t)=0$ $x\in\gamma_{1}\cup\gamma_{2}$ $u(xt)=0$ $x\in\gamma_{3}$ $x\in\omega_{:}$ $p(xt=0)=0$ $x\in\omega$ $u(xt=0)=0$ $L_{x}=L_{y}=1$ $\mu=\underline{e}$ $2(1+\nu)$ $k=\eta=b_{w}=1$ $\sigma_{0}=1$ $\lambda=\frac{\nu E}{(1+\nu)(1-2\nu)}$ $E=3$ $\nu=0.2$ $100\cross 100$ Euler

8 55 1 $p:t=$ 9e-05 $p:t=$ os o.s $0$ $0$ $0$ $-0.1$ $0$ $0$ $p:t=$ $ $ $p:t=$ $-$ o.s $0.s$ $0$ $0$ $0$ $0.s$ 1 $0$ $0.s$

9 56 4 [6]. LB (Ladyzhenskaya $B$ $-B$ abuska-brezzi) $su\triangleright\inf$ 1 [4][7]. 2 LBB [1] [1] S. Badia A. Quaini and A. Quarteroni Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction J. Comput. Phys. 228 (2009) [2] M. A. Biot General Theory of three-dimensional consolidation J. Appl. Phys.. 12 (1941) [3] M. A. Biot and D. G. Willis The elastic coefficients of the theory of the consolidation J. Appl. Mech. 24 (1957) [4] F. Brezzi and J. Douglas Jr. Stabilized mixed methods for the Stokes problem : Numer. Math. 53 (1988) [5] O. Coussy Poromechanics John Wiley & Sons 2004.

10 57 [6] M. A. Murad and A. F. D. Loula On stability and convergence offinite element approximation of Biot s consolidation problem Internat. J. Numer. Methods Engrg. 37 (1994) [7] [8] J. R. Rice and M. P. Cleary Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents Rev. Geophys. Space Phys. 14 (1966) [9] R. E. Showalter. Poroelastic filtmtion coupled to Stokes flow : Published in Control Theory of Partial Differential Equation Lecture Notes in Pure and Applied Mathematics 242 (2005)

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

日本数学会・2011年度年会(早稲田大学)・企画特別講演

日本数学会・2011年度年会(早稲田大学)・企画特別講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 企画特別講演 MSJMEETING-2011-0 1. 2., (1) ρ t + (ρw) x = 0, (ρw) t + (ρw 2 + p) x = (µw x ) x, (ρ(e + w2 2 )) t + ((ρ(e + w2 2 ) + p)w) x = (κθ x + µww x ) x., ρ, w, θ, µ κ, p e, p,

More information

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: 110-117 Issue Date 2011-01 URL http://hdl.handle.net/2433/170468 Right Type Departmental Bulletin Paper

More information

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL   R Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: 114-125 Issue Date 1992-12 URL http://hdl.handle.net/2433/83117 Right Type Departmental Bulletin Paper Textversion publisher

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

(Koji Kawasaki) Department of Civil Engineering, Graduate School of Engineering Nagoya University 1.,.,,,,,.,,,,,,,.,,,,.,,,,., (19

(Koji Kawasaki) Department of Civil Engineering, Graduate School of Engineering Nagoya University 1.,.,,,,,.,,,,,,,.,,,,.,,,,., (19 1673 2010 77-92 77 (Koji Kawasaki) Department of Civil Engineering, Graduate School of Engineering Nagoya University 1,,,,,,,,,,,,,,,,,,,,,, (1996 1999) $\sim$ VOF (Volume OfFluid), CADMAS-SURF (SUper

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and 316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and K. R. Sreenivasan), Solid Mech. Appl., 129, Springer,

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

空間多次元 Navier-Stokes 方程式に対する無反射境界条件 81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t 1 capillary-gravity wave 1) ) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 1, 13, 14, 15) RMI 11) RTI RTI 3 3 4 y = η(x, t) η t + ϕ 1 η x x = ϕ 1 y, η t + ϕ η x x = ϕ y. (1) 1 ϕ i i (i

More information

! " # Engineering First

!  # Engineering First ! " # Engineering First C ! ' ( ( * + " # ' ( ) * +,. -. $ % / &! " # ' ( ) * 5 2 3 2 2 3 3 C3 Exercises on Complex Variables I Chauchy-Riemann Chauchy Chauchy Taylor Laurent TA E TA Exercises on Differential

More information

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri 1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$

More information

工学的な設計のための流れと熱の数値シミュレーション

工学的な設計のための流れと熱の数値シミュレーション 247 Introduction of Computational Simulation Methods of Flow and Heat Transfer for Engineering Design Minoru SHIRAZAKI Masako IWATA Ryutaro HIMENO PC CAD CAD 248 Voxel CAD Navier-Stokes v 1 + ( v ) v =

More information

ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付け (高レイノルズ数の流れを記述するモデルの数理)

ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付け (高レイノルズ数の流れを記述するモデルの数理) 数理解析研究所講究録第 2048 巻 2017 年 26-30 26 ナビエストークス方程式の解の特異点のベクトルポテンシャルによる特徴付けシエフイールド大学数学統計学教室大木谷耕司 (Koji Ohkitani) School of Mathematics and Statistics The University of Sheffield I. INTRODUCTION 非圧縮性流体に対する Navier

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Vol.1( ) No JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2),

Vol.1( ) No JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2), Vol.1( 2001 7 ) No.01-070611 JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2), 3) 4), Yoichi IKEDA, Jun ichi KATSURAGAWA, Eisuke

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

流体とブラックホールの間に見られる類似性・双対性

流体とブラックホールの間に見られる類似性・双対性 1822 2013 56-68 56 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ ) 57 2 2.1 3 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

-37-

-37- ) ) ) ) ) ) (a) (b) -36- -37- (a) ) ) (b) ) -3 3 LIQCA ) ) a) Oka 999 3 LIQCA -38- u-p formulationoka 994 Newmark 3 FEM -39- b) (i) 3 FEM Zhang 9 3 (ii) () Tatsuoka 98Dr=9% 89% RL=.6DA=7.5% 998 999 Dr=5%

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1 $\Downarrow$ $\Downarrow$ 812 1992 67-93 67 Cahn-Hilliard (Daisuke Furihata (Tomohiko Onda 1 (Masatake Mori Cahn-Hilliard Cahn-Hilliard ( $[1]^{1}$ reduce ( Cahn-Hilliard ( Cahn- Hilliard Cahn-Hilliard

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Date 2017 URL http://hdl.handle.net/2433/229150 Right

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159

More information

株式会社日清製粉グループ本社 第158期中間事業報告書

株式会社日清製粉グループ本社 第158期中間事業報告書 C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6

More information

流体としてのブラックホール : 重力物理と流体力学の接点

流体としてのブラックホール : 重力物理と流体力学の接点 1890 2014 136-148 136 : Umpei Miyamoto Research and Education Center for Comprehensive Science, Akita Prefectural University E mail: umpei@akita-pu.ac.jp 1970 ( ) 1 $(E=mc^{2})$, ( ) ( etc) ( ) 137 ( (duality)

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

RX501NC_LTE Mobile Router取説.indb

RX501NC_LTE Mobile Router取説.indb 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 19 20 21 22 1 1 23 1 24 25 1 1 26 A 1 B C 27 D 1 E F 28 1 29 1 A A 30 31 2 A B C D E F 32 G 2 H A B C D 33 E 2 F 34 A B C D 2 E 35 2 A B C D 36

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

ランダムウォークの境界条件・偏微分方程式の数値計算

ランダムウォークの境界条件・偏微分方程式の数値計算 B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1

More information

IPSJ SIG Technical Report Vol.2014-HPC-143 No /3/3 Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time,

IPSJ SIG Technical Report Vol.2014-HPC-143 No /3/3 Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time, Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time, Identity Parareal, 1. 1 2 JST CREST 3 a) taami@cc.yushu-u.ac.jp 2001 Lions Pararealin-Time [1] [2], [3] [4],

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

TM

TM NALTR-1390 TR-1390 ISSN 0452-2982 UDC 533.6.013.1 533.6.013.4 533.6.69.048 NAL TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1390 e N 1999 11 NATIONAL AEROSPACE LABORATORY ... 1 e N... 2 Orr-Sommerfeld...

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$

27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$ 1413 2005 26-35 26 (Naoto YOKOYAMA)1 (Kana SAITO) (Jiro MIZUSHIMA) 1 (Peters 1984) (Kida and Goto 2002) (Donbar et al 2001) ( 2002) Navier-Stokes (Nada et al 2004) Everest et al (1995) Rayleigh - 2 (1998)

More information

本文/報告2

本文/報告2 Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 37 38 NHK R&D/No.144/2014.3 p w h f w h p

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用) 1701 2010 72-81 72 Impulse Response Prediction for Acoustic Problem by FDM ( ), ) TSURU, Hideo (Nittobo Acoustic Engineering Co. Ltd.) IWATSU, Reima(Tokyo Denki University) ABSTRACT: The impulse response

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

微分方程式の解を見る

微分方程式の解を見る ( ) norikazu[at]ms.u-tokyo.ac.jp http://www.infsup.jp/saito/materials/829gairon.pdf 28 2 9 NS ( ) 28 2 9 / 5 Newton 2 3 Navier-Stokes 4 5 6 NS ( ) 28 2 9 2 / 5 2 x 2 + bx + c = x = b ± b 2 4c 2 3 x 3 +

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

CFDEM DEM DEM(MPI) LIGGGHTS CFD CFD 5) 5) 5) 11) 10) β D n = βd (1) D n β D 10) 10) β = 0.2 0.5 β β β = 0.2 0.5 β = 0.2 β = 0.5 35 30 25 ( ) 20 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 β (-) β β 1) Zhu, H.P.,

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information