多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)
|
|
|
- さやな つちかね
- 6 years ago
- Views:
Transcription
1 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury)
2 49 [9] Navier-Stokes $\rho(\frac{\partial v}{\partial t}+v\cdot\nabla v)=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)_{:}$ $( \frac{\partial\rho}{\partial t}+v\cdot\nabla\rho)=-\rho\nabla\cdot v$ $( or\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho v)=0)$ $\rho=\rho(p)$. $\rho$ $vp$ $\eta $ $\eta$ $\rho_{0}\frac{\partial v}{\partial t}=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)$ (2.1) $\frac{1}{k_{f}}\frac{\partial p}{\partial t}=-\nabla\cdot v$ (2.2) $\rho_{0}=\rho(p_{0})$ $\frac{1}{k_{f}}=\frac{1}{\rho}\frac{\partial\rho}{\partial p} _{p_{o}}$ (2.3) Stokes 2 $K_{f}$
3 $\lambda$ 50 $u$ $\mu$ $\hat{\epsilon}$ $\hat{\sigma}$ Lam\ e $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}=0$ (2.4) $\hat{\sigma}=2\mu\hat{\epsilon}+\lambda(i;\hat{\epsilon})i$ (2.5) $\hat{\epsilon}=\{(\nabla u)+(\nabla u)^{t}\}/2$ (2.6) 1 Navier 2 Hooke Navier 2.2 Darcy $q$ Darcy $q+ \frac{k}{\eta}\nabla p=0$ (2.7) $k$ $\eta$ (porocity) $\phi$ $v$ $q$ porocity $q=\phi v$ (2.8) $\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot(\phi\rho_{f}v)=0$ $q$ $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot q=0$ (2.9) $\frac{\phi}{k_{f}}\frac{\partial p}{\theta t}+\nabla\cdot q=0$
4 51 $q+ \frac{k}{\eta}\nabla p=0$ (210) $\frac{\phi}{k_{f}}\frac{\partial p}{\partial t}+\nabla\cdot q=0$ (211) Darcy 2.3 Biot Darcy Navier Biot [2]. Biot [3][8][5]. $(\hat{\sigma}\hat{\epsilon})$ $(p \phi)$ $\Psi_{s}=\Psi_{s}(\hat{\epsilon} \phi)$ (212) $d\psi_{s}=\hat{\sigma}$ : $d\hat{\epsilon}+pd\phi$ (213) $G_{s}=\Psi_{s}-p\phi$ (214) $G_{s}=G_{s}(_{\vee} \hat{\epsilon}p);\hat{\sigma}=\frac{\partial G_{s}}{\partial\hat{\epsilon}}(\hat{\epsilon}p);\phi=-\frac{\partial G_{s}}{\partial p}(\hat{\epsilon}p)$ (215) $d\sigma_{i_{\dot{j}}}=\frac{\partial\sigma_{ij}}{\partial\epsilon_{kl}}d\epsilon_{kl}+\frac{\partial\sigma_{ij}}{\partial p}dp$ $= \frac{\partial^{2}g_{s}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}d\epsilon_{kl}+\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}dp$ $d\phi=\frac{\partial\phi}{\partial\epsilon_{ij}}d$ $+ \frac{\partial\phi}{\partial p}dp$ $=- \frac{\partial^{2}g_{s}}{\partial\epsilon_{ij}\partial p}d\epsilon_{ij}-\frac{\partial^{2}g_{s}}{\partial p\partial p}dp$
5 $\lambda$ 52 $C_{-kl} \equiv\frac{\partial^{2}g_{8}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}$ $b_{ij} \equiv-\frac{\partial^{2}g_{8}}{\partial\epsilon_{ij}\partial p}=-\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}$ $\frac{1}{k_{\phi}}\equiv-\frac{\partial^{2}g_{s}}{\partial p\partial p}$ Cijkl $=\lambda\delta_{ij}\delta_{kt}+\mu(\delta_{ik}\delta_{jl}+\delta_{it}\delta_{jk})$ $b_{ij}=b_{w}\delta_{ij}$ $d\hat{\sigma}=d\hat{\sigma}_{s}-b_{w}$dpi (2.16) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ $\mu$ $d\phi=b_{w}\nabla\cdot du+\frac{1}{k_{\phi}}dp$ (2.17) Lam\ e $B_{w}$ $K_{\phi}$ Biot-Wilhs [3] Biot-Willis (217) $\phi$ (2.9) $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}=\frac{\partial\phi}{\partial t}+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $=(B_{w} \nabla\cdot\frac{\partial u}{\partial t}+\frac{1}{k_{\phi}}\frac{\partial p}{\partial t})+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $\approx B_{w}\nabla\cdot\frac{\partial u}{\partial t}+(\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}})\frac{\partial p}{\partial t }$ $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.18) $\frac{1}{k}\equiv\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}}$ (2.19) $\phi_{0}$ $K $ Navier Hooke (2.5) Hooke (216) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}_{s}+b_{w}\nabla p=0$ (2.20) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.21)
6 53 Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.22) $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{u\prime}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.23) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}+\underline{b_{w}\nabla p}=0$ (2.24) Biot $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.25) Darcy Navier $B_{w}\nabla\cdot u$ $B_{w}\nabla p$ $B_{v)}$ quasi-static Biot $\rho$ $1/K $ quasi-static Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.26) $\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.27) $-\nabla\cdot\hat{\sigma}+b_{w}\nabla p=0$ (2.28) $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$. (2.29) 3 quasi-static Biot quasi-static Biot $\Omega$ 1
7 $r.\backslash _{:}:i$ $!^{:}$ $ $ $\Omega=\{(xy) x <\frac{l_{x}}{2}0<y<l_{y}\}$ $ $ $\Gamma_{2}=\{(xy)\in\partial\Omega x >\frac{l_{x}}{5}y=l_{y}\}$ 54 $y\cdot\frac{111fll1^{\triangleleft 0}\ulcorner}{}$ :: :: :.:!1 ::.!: $\Gamma_{3}=\partial\Omega\backslash :: :: : $\Gamma_{1}=\{(xy)\in\partial\Omega x \leq\frac{l_{x}}{5}y=l_{y}\}$ : (\Gamma_{1}\cup\Gamma_{2})$. $r\cdot oi.:::x\overline{--\omega J2nx\cdot*t}x\prime 2$ 1 $x\in\partial\omega$ $p(xt)=0$ $\sigma_{yy}(xt)=-\sigma_{0}$ $x\in\gamma_{1}$ $\sigma_{yy}(xt)=0$ $x\in.\gamma_{2}$ $\sigma_{xy}(x t)=0$ $x\in\gamma_{1}\cup\gamma_{2}$ $u(xt)=0$ $x\in\gamma_{3}$ $x\in\omega_{:}$ $p(xt=0)=0$ $x\in\omega$ $u(xt=0)=0$ $L_{x}=L_{y}=1$ $\mu=\underline{e}$ $2(1+\nu)$ $k=\eta=b_{w}=1$ $\sigma_{0}=1$ $\lambda=\frac{\nu E}{(1+\nu)(1-2\nu)}$ $E=3$ $\nu=0.2$ $100\cross 100$ Euler
8 55 1 $p:t=$ 9e-05 $p:t=$ os o.s $0$ $0$ $0$ $-0.1$ $0$ $0$ $p:t=$ $ $ $p:t=$ $-$ o.s $0.s$ $0$ $0$ $0$ $0.s$ 1 $0$ $0.s$
9 56 4 [6]. LB (Ladyzhenskaya $B$ $-B$ abuska-brezzi) $su\triangleright\inf$ 1 [4][7]. 2 LBB [1] [1] S. Badia A. Quaini and A. Quarteroni Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction J. Comput. Phys. 228 (2009) [2] M. A. Biot General Theory of three-dimensional consolidation J. Appl. Phys.. 12 (1941) [3] M. A. Biot and D. G. Willis The elastic coefficients of the theory of the consolidation J. Appl. Mech. 24 (1957) [4] F. Brezzi and J. Douglas Jr. Stabilized mixed methods for the Stokes problem : Numer. Math. 53 (1988) [5] O. Coussy Poromechanics John Wiley & Sons 2004.
10 57 [6] M. A. Murad and A. F. D. Loula On stability and convergence offinite element approximation of Biot s consolidation problem Internat. J. Numer. Methods Engrg. 37 (1994) [7] [8] J. R. Rice and M. P. Cleary Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents Rev. Geophys. Space Phys. 14 (1966) [9] R. E. Showalter. Poroelastic filtmtion coupled to Stokes flow : Published in Control Theory of Partial Differential Equation Lecture Notes in Pure and Applied Mathematics 242 (2005)
MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar
1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,
836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary
カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)
1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\
(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].
1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle
Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$
20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t
1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$
空間多次元 Navier-Stokes 方程式に対する無反射境界条件
81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA
$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-
1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional
! " # Engineering First
! " # Engineering First C ! ' ( ( * + " # ' ( ) * +,. -. $ % / &! " # ' ( ) * 5 2 3 2 2 3 3 C3 Exercises on Complex Variables I Chauchy-Riemann Chauchy Chauchy Taylor Laurent TA E TA Exercises on Differential
(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri
1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$
Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun
1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National
110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2
1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto
~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I
カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)
1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$
カルマン渦列の消滅と再生成のメカニズム
1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]
流体とブラックホールの間に見られる類似性・双対性
1822 2013 56-68 56 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ ) 57 2 2.1 3 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$
20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x
University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )
(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}
1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$
高密度荷電粒子ビームの自己組織化と安定性
1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$
(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,
1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig
Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie
Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,
89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159
株式会社日清製粉グループ本社 第158期中間事業報告書
C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6
一般相対性理論に関するリーマン計量の変形について
1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$
128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$
1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (
RX501NC_LTE Mobile Router取説.indb
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 19 20 21 22 1 1 23 1 24 25 1 1 26 A 1 B C 27 D 1 E F 28 1 29 1 A A 30 31 2 A B C D E F 32 G 2 H A B C D 33 E 2 F 34 A B C D 2 E 35 2 A B C D 36
ランダムウォークの境界条件・偏微分方程式の数値計算
B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1
IPSJ SIG Technical Report Vol.2014-HPC-143 No /3/3 Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time,
Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time, Identity Parareal, 1. 1 2 JST CREST 3 a) [email protected] 2001 Lions Pararealin-Time [1] [2], [3] [4],
TM
NALTR-1390 TR-1390 ISSN 0452-2982 UDC 533.6.013.1 533.6.013.4 533.6.69.048 NAL TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1390 e N 1999 11 NATIONAL AEROSPACE LABORATORY ... 1 e N... 2 Orr-Sommerfeld...
untitled
Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-
27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$
1413 2005 26-35 26 (Naoto YOKOYAMA)1 (Kana SAITO) (Jiro MIZUSHIMA) 1 (Peters 1984) (Kida and Goto 2002) (Donbar et al 2001) ( 2002) Navier-Stokes (Nada et al 2004) Everest et al (1995) Rayleigh - 2 (1998)
本文/報告2
Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 37 38 NHK R&D/No.144/2014.3 p w h f w h p
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)
1701 2010 72-81 72 Impulse Response Prediction for Acoustic Problem by FDM ( ), ) TSURU, Hideo (Nittobo Acoustic Engineering Co. Ltd.) IWATSU, Reima(Tokyo Denki University) ABSTRACT: The impulse response
CFDEM DEM DEM(MPI) LIGGGHTS CFD CFD 5) 5) 5) 11) 10) β D n = βd (1) D n β D 10) 10) β = 0.2 0.5 β β β = 0.2 0.5 β = 0.2 β = 0.5 35 30 25 ( ) 20 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 β (-) β β 1) Zhu, H.P.,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
