4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

Similar documents
master.dvi

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

30

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

i Γ


( ) ,

Gmech08.dvi

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

K E N Z OU

Gmech08.dvi

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

IA

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Fr

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

第3章

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i


( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

LLG-R8.Nisus.pdf


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

chap1.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

( )

数学演習:微分方程式

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

II 2 II

Gmech08.dvi

2000年度『数学展望 I』講義録

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

meiji_resume_1.PDF

1

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Microsoft Word - 章末問題


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

構造と連続体の力学基礎

B ver B

( ) ( )

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a



18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

chap03.dvi

KENZOU

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

微粒子合成化学・講義

微粒子合成化学・講義

i

i 18 2H 2 + O 2 2H 2 + ( ) 3K

untitled

QMI_10.dvi

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


sec13.dvi

i

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Part () () Γ Part ,

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

0.1 I I : 0.2 I

Transcription:

4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20) e, T T 0 S = k kt e + 0, (T/T 0 0) e = kt +, T T 0 /kt S = k ln(2 /kt + ) + 2 + /kt + = k ln 2 2kT + 2kT + O(( /kt )2 ) 0 3 ln 2 kt (4.9) 30

.0 S(T) 0.5 0.0 0.0.0 2.0 kt/ 0: 4.6. 2. q p q p h/2 q p q p = h N 3 h 3N = h 3N Π i dr i Π j dp j dqdp (Action) 3

h 2. 2 2 d 3 r d 3 r 2 = V 2 L x L 2 x 2 L x 2 L 2 2 0 L x 0 L x : 2 N N! 4.6.2 T N H = i 2m p2 i 32

Z Z = h 3N Π N N! i=d 3 r i d 3 p i exp p 2 i /2m i = V N h 3N N! ( ) 3N/2 2πm (4.2) V N (3.) F S C F = ( ) 3 2πm ln Z = N 2 ln + ln(v/h 3 ) ln N + S = F ( ) ( ) 3 2πm V T = Nk 2 ln + ln Nh 3 + + 3Nk/2 (2πm ) 3/2 V e 5/2 = Nk ln Nh 3 C = T S T = 3Nk/2 Sackur-Tetrode (4.22) N! 2 (Extensive Variable) (Intensive Variable) (4.22) N! ln(v/n) ln V 2 N ln 2 λ p p = h/λ h kt/2 λ T h 2 2mλ 2 T = 2 kt S = Nk ln (2π) 3/2 e 5/2 v λ 3 = 32 2πe Nk ln 5/3 TT0 h 2, T 2mv = 2/3 2 kt 0 v = V/N v /3 S/Nk 4.2 33

2.0.0 S(t)/Nk 0.0.0 2.0 3.0 0.00 0.02 0.04 0.06 0.08 T/T 0 2: Sackur-Tetrode 4.6.3 ω i N H(q, p) = ( ) 2m p2 i + mω2 i 2 q2 i i Z = h N Π i dq i dp i exp H(q, p) = Π i dq i dp i exp h 2m p2 i mω2 i 2 ( ) /2 ( ) /2 ( ) 2πm 2π = Π i h mωi 2 = Π i hω i q 2 i (4.23) N! (4.23) F = ln Z = kt i ln ( hω i ) S = F T = k i C = T S T = Nk ln ( hω i ) + Nk N! Extensive 34

4.6.4 µ i E, µ i B µ i E 3: z ( ) h = µ 0 E cos θ, (µ 0 = µ i ) θ z z φ (θ, φ) z rot = = dφ sin θdθ expµ 0 E cos θ = 2π dve µ0ev, (v = cos θ) 4π µ 0 E sinh (µ 0E) Z N z N rot F rot = N ln z rot = NkT ln 4π sinh(µ 0E) µ 0 E (4.24) 35

S = F T = Nk ln 4π sinh(µ 0E) + NkT µ 0 E = Nk µ 0E ln 4π sinh(µ 0E) µ 0 E coth(µ 0 E) + µ 0 E s(t) = ln4πt sinh(/t) t coth(/t) + kt 2 coth(µ 0E) + T = Nks(t) t = kt/µ 0 E s(t) 4 s(t) { ln(4π) + 5/6t 2, ln(4πt) /t, t t 3 3.0 2.0 s(t).0 0.0.0 0.0 0.5.0.5 2.0 t 4: z- Ω µ z i = µ 0 z rot µ0e cos θ dω cos θe (4.24) µ z i = N i ln z r E = F E = Nµ 0L(y), (y = µ 0 E) 36

L(y) Langevin L(y) = coth y y Langevin y { y/3 y L(y) y kt µ 0 E { µ z i N µ 0 T µ 0 E/k µ 2 0E/3kT T µ 0 E/k i Debye µ z i /µ 0 t = kt/µ 0 E 5.0 0.5 0.0 0 2 3 4 5 t 5: : = µ 0 E z rot = e εi = e µ0e + e µ0e = 2 cosh(µ 0 E) i=,2 F = N ln2 cosh(µ 0E) S = F T = Nk ln2 cosh(µ 0E) Nk µ 0E kt tanh(µ 0E) = Nks(t) s(t) = ln2 cosh(/t) t tanh(/t) 37

t = kt/µ 0 E s(t) 4 6 H t kt/µ 0 H kt/µ 0 (H/2) = 2t s(2t) H T A A B C 3.0 2.0 B A s C D.0 0.0 0.0 0.5.0.5 2.0 t 6: 38

4.6.5 He, Ne, Ar 2 2 3 6 6 ( 3) 3 2 ( ) 6 3: 2 Lagrangian m, m 2, 2 R G r, r 2 7 m r + m 2 r 2 = 0, r r 2 = r (4.25) r r = m 2 M r, r 2 = m M r, (M = m + m 2 ) m m 2 r 2 G r R 7: (4.25) T T = m 2 (Ṙ + r ) 2 + m 2 2 (Ṙ + r 2) 2 = M 2 Ṙ2 + m 2 r 2 + m 2 2 r 2 2 = M 2 Ṙ2 + µ 2 ṙ2, µ = + (4.26) m m 2 39

µ (reduced mass) (r, θ, φ) r = (r cos φ sin θ, r sin φ sin θ, r cos θ) ẋ = ṙ cos φ sin θ r sin φ φ sin θ + r cos φ cos θ θ ẏ = ṙ sin φ sin θ + r cos φ φ sin θ + r sin φ cos θ θ ż = ṙ cos θ r sin θ θ µ 2 ṙ2 = µ 2 ṙ 2 + r 2 ( θ 2 + sin 2 θ φ 2 ) (4.26) r V (r) L = T V (r) = M 2 Ṙ2 + µ 2 ṙ2 + 2 I( θ 2 + sin 2 θ φ 2 ) V (r), (I = µr 2 ) I r, θ, φ p r, p θ, p φ P = L Ṙ = MṘ, p r = L ṙ = µṙ, p θ = L = I θ, p θ φ = L φ = I sin2 θ φ h = P Ṙ + p rṙ + p θ θ + pφ φ L = P 2 2M + 2µ p2 r + V (r) + 2I ( p 2 θ + ) sin 2 θ p2 φ M Z t Z z N I r r r 0 Z = Z t z N, z = z rot z vib z rot, z vib 40

z rot = h 2 dθdp θ dφdp φ exp h = h 2 dθdp θ dφdp φ exp 2I (p2 θ + sin 2 θ p2 φ ) = 2πI h 2 dφdθ sin θ = 8πI h 2 E rot E rot = N ln z rot = N ln(8πi/h2 ) = NkT C rot = de rot dt = Nk 2 V (r) r = r 0 V (r) = V (r 0 ) + 2 V (r 0 )δr 2 +, δr = r r 0 r h v = V (r 0 ) + 2µ p2 r + V 2 µω2 v δr2 +, ω v = (r 0 ) µ ω v E v = NkT, C v = de v dt = Nk 2 4 (k) 3/2 4: 2 7Nk/2 4

5Nk/2 4.6.6 Gibbs 8 V A V B 8: V V A, V B A, B 2 N A, N B p m A, m B pv A = N A kt, pv B = N B kt p(v A + V B ) = (N A + N B )kt N A /V A = N B /V B = (N A + N B )/(V A + V B ) V N Sackur-Tetrode { (2πm ) } 3/2 e 5/2 S = kn ln h 3 + ln V N (4.27) 2 Z = V A NA N A!h 3NA ( 2πmA ) 3NA/2 V B N B N B!h 3NB ( 2πmB ) 3NB/2 (4.28) 42

V A V B A, B 2 N A, N B (4.27) Z = V NA N A!h 3NA ( 2πmA ) 3NA/2 V NB N B!h 3NB ( 2πmB ) 3NB/2 (4.29) (4.28) (4.29) V S = N A ln(v/n A ) + N B ln(v/n B ) N A ln(v A /N A ) N B ln(v B /N B ) = N A ln(v/v A ) + N B ln(v/v B ) (4.30) = N A ln(n/n A ) + N B ln(n/n B ) N A = N B N ln 2 Gibbs (4.29) Z = V NA+NB (N A + N B )!h 3(NA+NB) ( ) 3NA/2 ( 2πmA 2πmB ) 3NB/2 (4.3) (4.29) (4.3) N A!N B! (N A +N B )! (4.3) Gibbs 43