Tricorn

Similar documents
36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

85 4

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


1).1-5) - 9 -

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

振動工学に基礎

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

TOP URL 1

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

重力方向に基づくコントローラの向き決定方法

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

koji07-01.dvi

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ



x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

i


Wide Scanner TWAIN Source ユーザーズガイド

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

第1部 一般的コメント


Z: Q: R: C:

sec13.dvi

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

第1章 国民年金における無年金

³ÎΨÏÀ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

chap1.dvi

LLG-R8.Nisus.pdf

橡ミュラー列伝Ⅰ.PDF

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


1 (1) (2)


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2000年度『数学展望 I』講義録

29

TOP URL 1

Gmech08.dvi

Chap10.dvi

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

数学Ⅱ演習(足助・09夏)

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

all.dvi

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

2 2 L 5 2. L L L L k.....

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

I

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

main.dvi

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Gmech08.dvi

基礎数学I

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

limit&derivative

koji07-02.dvi

provider_020524_2.PDF

数学の基礎訓練I

Transcription:

Triorn 016 3

1 Mandelbrot Triorn Mandelbrot Robert L DevaneyAn introdution to haoti dynamial Systems Addison-Wesley, 1989 Triorn 1 W.D.Crowe, R.Hasson, P.J.Rippon, P.E.D.Strain- Clark, On the struture of the Mandelbar set, Nonlinearity, (1989), 541-553 Mandelbrot Triorn Julia Julia 3 Julia Julia z z + ( ) Julia Julia F ig.1f ig.f ig.3 F ig.4 F ig1 F ig 1

F ig3 F ig4 ( F ig.f ig.4 Cantor F ig.1 : = 0.36084 + 0.100376iF ig. : = 0.5F ig.3 : = 1F ig.4 : = 0.7688 + 0.163i ) Julia Cantor 0 0 Julia 0 Cantor Julia 0 Mandelbrot Mandelbrot P (z) = z + f (z) = z + Mandelbrot 0 f 0 Triorn T M T F ig.5f ig.6

F ig.5 Mandelbrot F ig.6 Triorn { C : } Mandelbrot Triorn 3 Triorn 3 4 4.4 ([1]Theorem5) Ω 1, Ω D 1, D P (z) = z + P n P P P P n Ω 1 {P n (0)} n N 1 () Ω {P n (0)} n N f (z) = z + D 1 {f n (0)} n N 1 () 3

D {f n (0)} n N Ω 1 Ω = 3/4 1 D 1 D 4.5 4.6 4.4 4.6 f (z) = z [] 4 Mandelbrot Mandelbrot Julia 3 Triorn 4 Mandelbrot Mandelbrot Julia Mandelbrot n N Q n Q n = Q Q Q P (z) = z + (z C C).1 () n N P n z 0 P n (z 0 ) = z 0 (P n ) (z 0 ) > 1.1 Julia. (Julia ) C P Julia P.3 ( Julia ) C P Julia K 4

C n N K = {z C : P n (z) (n )}.4 (Proposition8.) Julia Julia. Mandelbrot.5 (Mandelbrot ) Mandelbrot M = { C : P n (0) (n )} Mandelbrot F ig.1. F ig.1 Mandelbrot ( Re(z) Im(z) ) F ig.1 5

M.6 M { C : }.7 M.6 (i) (ii) (i) { C : > } z C z P (z) = z + z z z = z ( 1) > 1 > 1 λ = 1 P (z) λ z n P n (z) λ n z λ = 1 > 1 n P n (z) > M (ii) M M M P n (0) (n ) P n 1 () (n ) N N P N 1 () > P n 1 () P N 1 ( ) > 6

< P N 1 ( ) P N ( ) = {P N 1 ( )} + P N 1 ( ) > P N 1 ( ) P N 1 ( ) = P N 1 λ = P N 1 ( ) 1 > 1 k ( ) ( P N 1 ( ) 1) P N ( ) λ P N 1 ( ) P N+k ( ) λ k P N 1 ( ) k P N+k ( ) > (i) M M M M M (i)(ii) M { C : } : = P ( ) = P () = M Q.E.D. { C : > } M M.7 : C n N P n (0) = P n (0) z C P n (z) = P n (z) 7

(i) n = 1 P (z) = z + P (z) = z + P (z) = P (z) P (z) = P (z) (ii) n = k P k (z) = P k (z) P (z) = P k (P (z)) = P k+1 (z) = P k (P (z)) = P k (P (z)) = P k+1 (z) P k+1 (z) = P k+1 (z) n = k + 1 n 1 P n (z) = P n (z) P n (0) = P n (0) M = { C : P n (0) (n )} = { C : P n (0) (n )} M Q.E.D. 8

3 Triorn Mandelbrot P (z) = z + f (z) = z + 3.1 (Triorn) Triorn T T = { C : f n (0) (n )} Mandelbrot P (z) = z + Triorn f (z) = z + f (z) = z 4 +z + + Triorn F ig3.1 F ig3.1 Triorn ( Re(z) Im(z) ) T 9

T 3. σ : z e πi/3 z σ(t ) = T () 3.3 T { C : } 3.4 T 3. σ : z e πi/3 z σ(t ) = T z C, C ω = e πi/3 f ω (ωz) = ωf (z) f ω (ωz) = (ωz) + ω = ω z + ω = ωz + ω = ω(z + ) = ωf (z) f ω (ωz) = ωf (z) n f n ω(ωz) = ωf n (z) f n ω(0) = ωf n (0) f n ω(0) = f n (0) T = { C : f n (0) (n )} = { C : f n ω(0) (n )} σ : z e πi/3 z σ(t ) = T 10 Q.E.D.

3.3 : M (i) (ii) (i) { C : > } z C z f (z) = z + z z z z z = z ( 1) 1 > 1 λ = 1 f (z) λ z n f n (z) λ n z n f n (z) > T T { C : } (ii) T T T f n (0) (n ) f n 1 () (n ) N N f N 1 () > f n 1 () f N 1 ( ) > 11

< f N 1 ( ) f N ( ) = f N 1 ( ) + f N 1 ( ) > f N 1 ( ) f N 1 ( ) = f N 1 λ = f N 1 ( ) 1 > 1 k ( ) ( f N 1 ( ) 1) f N ( ) λ f N 1 ( ) f N+k ( ) λ k f N 1 ( ) k f N+k ( ) > (i) T T T T T (i)(ii) M { C : } 3.4 C n N f n (0) = f n (0) z C f n (z) = f n (z) Q.E.D. (i) n = 1 f (z) = z + f (z) = z + = z + 1

f (z) = f (z) f (z) = f (z) (ii) n = k f k (z) = f k (z) f (z) = f k (f (z)) = f k+1 (z) = f k (f (z)) = f k (f (z)) = f k+1 (z) (z) = f k+1 (z) f k+1 n = k + 1 f n (z) = f n (z) f n (0) = f n (0) T = { C : f n (0) (n )} = { C : f n (0) (n )} T Q.E.D. 4 Mandelbrot Triorn 4.1 () P (z) 13

n z 0 P n (z 0 ) = z 0 (n ) P n (z 0 ) = z 0 (P n ) (z 0 ) 1 z 0 n z 0 P (z 0 ) = z 0 P (z 0 ) 1 f(z) z f(z) f (z) ( 1 ) z 0 f (z 0 ) = z 0 f (z 0 ) = z 0 (f ) (z 0 ) < 1 z 0 f (z 0 ) = z 0 (f (z 0 ) z 0 ) f (z 0 ) = z 0 (f ) (z 0 ) < 1 z 0 P P (z 0 ) = z 0 P (z 0 ) 1 z 0 f f (z 0 ) = z 0 f (z 0 ) 1 f f (z) f (z) = z 4 + z + + f (z 0 ) = z 0 (f ) (z 0 ) < 1 Mandelbrot Ω 1, Ω P (z) = z + Ω 1 {P n (0)} n N 1 () Ω {P n (0)} n N 4. Ω 1 Ω Ω 1 Ω Ω 1 = { C : = w w, w C, w < 1/} Ω = { C : + 1 < 1/4} 14

F ig.4.1 Ω 1 Ω 4. (i) Ω 1 P (z) w P (w) = w P (w) < 1 w P (w) = w w + = w = w w P (w) < 1 P (w) = w w < 1/ Ω 1 = { C : = w w w < 1/} (ii) Ω P (z) w 1, w P (w 1 ) = w P (w ) = w 1 ( P (w 1 ) = w 1 ) (P ) (w 1 ) < 1 P (w 1 ) = w P (w ) = w 1 P (P (w )) = P (w ) = w 15

(P ) (w ) = P (P (w ))P (w ) = P (w 1 )P (w ) = 4w 1 w (P ) (w ) < 1 (P ) (w ) = 4 w 1 w < 1 w 1 w = + 1 + 1 < 1 4 Ω = { C : + 1 < 1/4} Q.E.D. Triorn D 1, D f (z) = z + D 1 {f n (0)} n N 1 () D {f n (0)} n N 4.3 D 1 D 1 D 1 = { C : = w w, w < 1/, w C} F ig.4. D 1 D 16

F ig4. 4.3 z 0 f (z 0 ) = z 0 z 0 + = z 0 = z 0 z 0 z 0 (f ) (z 0 ) < 1 f (z 0 ) = z 0 + = z 0 (f ) (z 0 ) = 4z0 3 + 4z 0 = 4 z 0 z0 + = 4 z 0 z 0 = 4 z 0 z 0 < 1/ D 1 = { = w w : w < 1/} Q.E.D. Ω 1 Ω 3/4 1 D 1 D Triorn 3.3.4 17

= 3/4 D 1, D Triorn D 1, D = 3/4 f (z) 3/4 D 1 D Triorn D 1 D = a + bi 1 < a < 00 < b < 1 D 1 D 4.4 (1Theorem5) ε > 0 D( 3/4, ε) D 1 {f n (0)} n N D( 3/4, ε) 3/4 ε F ig4.3 4.1 4.5 f (z) = z + 4 18

4.5 : ( 1 ) w f (w) = w f (w) w = 0 f (w) w = w 4 + w w + + = 0 4 4 Q.E.D. 4.6 (1,Lemma 1) = a + bi a, b 1 < a < 00 < b < 1 (a)() (a) (b) D 1 f z 1 > 1/ z > 1/ z 1, z D 1 f z 1 > 1/ z > 1/ w 1 1/, w 1/ 4 z 1, z, w 1, w () D 1 f z 1 > 1/ z > 1/ z 1, z w = 1/ w 3. 4.6 f (z) = z + = z z = x+iy, = a+bi H 1, H. ( 1 < a < 00 < b < 1) H 1, H H 1 : ( x 1 ) y = 1 4 a H : ( x + 1 ) y = b ( y = ± x 1 ) 1 4 + a y = b ( x + 1 ) 19

( y = x 1 ( y = x 1 y = b ( x + 1 ) ) 1 4 + a ) 1 4 + a H + 1 H 1, H ( H 1 + : y = x 1 ) 1 ( 4 + a x < 1 1 4a ( H1 : y = x 1 ) 1 ( 4 + a x < 1 1 4a b H : y = ( ) x + 1 ( 1 ) 1 + 1 4a 1 + 1 4a ) < x ) < x F ig.4.4 H + 1 F ig4.5 H 1 0

F ig.4.6 H x < 1/ H 1 H ( x 1 ) 1 4 + a = b ( ) x + 1 ϕ 1 ( ϕ 1 (x) = x 1 ) 1 4 + a b ( ) x + 1 ( ϕ 1(x) = 1 x 1 + a + (x 1)x ) 4b (x + 1) x < 1/ ϕ 1(x) > 0 ϕ 1 (x) (x 1/ 0) ϕ 1 (x) (x ) x < 1/ ϕ 1 (x) = 0 1 x 1 H b (x 1 + 1 ) y 1 H 1, H (x 1, y 1 ) x 1 < 1/ x 1 + y1 > 1/ x < 1/ H 1 H 1/ 1

x > 1/ H + 1 H a 1 < 1+ 1 4a H 1 + 1 < x < 1+ 1 4a 1+ 1 4a < x ( x 1 ) 1 4 + a = b ( ) x + 1 ϕ ϕ (x) = ( x 1 ) 1 4 + a b ( ) x + 1 ( ϕ (x) = 1 x 1 + a + (x 1)x ) 4b (x + 1) x < 1/ ϕ (x) > 0 ( ) 1 + 1 4a ϕ b = < 0 1 4a + ϕ (x) (x ) x > 1+ 1 4a ϕ (x) 1 x > 1/ ϕ (x) = 0 1 x H b (x + 1 ) y H 1, H (x, y ) x > 1/ x + y > 1/ x > 1/ H 1 H 1/ 1/ < x < 1/ H + 1 1 1 4a < x < 1+ 1 4a H 1, H 1 < a 3/4 1 1 4a < 1 1 < 1+ 1 4a 1/ < x < 1/ H + 1 H

1 < x < 1 1 4a H 1 H 3/4 < a < 0 b 0 < b < 1 A = 1 4 ab = b X = x 1 1 4 < A < 1B > 0 1 < X < A A, B, X ( x 1 ) 1 4 + a = b ( ) x + 1 X A = B... () X + 1 X 1 < X A (X + 1) > 0 X A = B (X + 1) B = (X + 1) (X A) ϕ(x) = (X + 1) (X A) X ϕ(x) = (X + 1)(X A) + X(X + 1) 1 < X A X 1... 1 1+8A 4... A ϕ (X) 0 + 0 - - ϕ(x) 0 M(A) 0 3

( ) 1 1 + 8A M(A) = ϕ 4 F ig4.7 () B > M(A) 0 B = M(A) 1 0 < B < M(A). B = M(A) a, b 8a 4a 3 8a(8a 3) + 8b + 9 = 0... () a, b () = a + bi D 1 = a + bi { C : = w w, w C, w = 1/} w = p + qi = w w { a = p p + q b = q + pq { p = 1 os θ q = 1 sin θ θ θ < θ < π 4

θ 0 < θ < π os θ = 1 3 a, b 3 4 < a < 00 < b < 1 θ 1 a, b θ { 3 4 < 1 os θ 1 4 os θ + 1 4 sin θ < 0 0 < 1 sin θ + 1 os θ1 sin θ os θsin θ { 1 < os θ < 1 3 sin θ > 0 θ θ < θ < π ( θ 0 < θ < π os θ = 1 3 3 4 < a < 00 < b < 1 θ a, b () = a + bi D 1 B = M(A) = a + bi D 1 () 1 () X = 1 os θ + 1 () H 1 H x 1 os θ H H 1 H y 1 sin θ H 1 H (x, y) = ( 1 os θ, 1 ) sin θ (θ ) D 1 1/ < x < 1/ H 1 H 1/ () b = b = Φ(a) = 1 8 (8a 4a 3 8a(8a 3) + 9 ) ) F ig4.8 5

a, b = a + bi D 1 a, b D 1 0 B < M(A) (F ig.4.8 () ) b < Φ(a) = 1 8 (8a 4a 3 8a(8a 3) + 9 ) Y = ϕ(x) Y = B () = a + bi D 1 B > M(A) (F ig.4.8 () ) b > Φ(a) = 1 8 (8a 4a 3 8a(8a 3) + 9 ) Y = ϕ(x) Y = B () = a + bi D 1 0 < B < M(A) Y = ϕ(x) Y = B X 1, X 1 < X 1 < 1 1 + 8A 4 < X < A X = x 1 X 1, X x u 1, u u 1, u v 1, v H 1 < u 1 < 1 1 + 8A 4 1 1 + 8A < u < 1 4 A v 1 = B u 1 + 1 v = B u 1 + 1 (u 1, v 1 )(u, v ) H 1, H u 1 + v 1 > 1 4 u 1 + v 1 1 4 = u 1 + 4B (u 1 + 1) 1 4 6

0 < B u 1 α = 1 1+8A 4 u 1 + v 1 1 4 > u 1 1 4 > α 1 4 > 0 u 1 + v 1 > 1 4 u + v < 1 4 u + v 1 4 = u + 4B (u + 1) 1 4 B < M(A) u α = 1 1+8A 4 u + v 1 4 < α + 4M(A) (α + 1) 1 4 = 4A( 8A 1 3) + 8A 1 ( 8A 1 1) = 0 u + v < 1 4. B < M(A) (F ig.4.8 () ) H 1, H 1 1/ 1/ H 1 H D 1 4 z 1 Re(z 1 ) < 1 z Re(z ) > 1. w w < 1 w 1 1 < Re(w 1) < 1 w 1 > 1 D 1 3 z 1 Re(z 1 ) < 1 7

z Re(z ) > 1. w w = 1 D 1 z 1 Re(z 1 ) < 1 z Re(z ) > 1. D 1 z 1, z, w 1, w z 1 z w 1 > 1/ w < 1/ D 1 z 1, z, w z 1 z > 1/ w = 1/ D 1 z 1, z w 1, w z 1 z > 1/ ()() f (z) z = 0 () f (z) z = 0 () 4.5 4 () 4 () () () () z 1 = x 1 + iy 1 z = x + iy w 1 = u 1 + iv 1 w = u + iv w = 1 os θ + i 1 sin θ 1 < a < 0 0 < b < 1 3 D 1 z 1, z () 4 z 1, z () () () f D 1 z 1, z, w 1, w 4 4 () () 4 8

D 1 z 1, z, w 3 3 () () 4 z 1, z, w 3 () 1 () 3 w () () 4 z 1, z, w 1, w w 1 = w = w 4.6 (a)() Q.E.D. 4.4 4.4 w 1, w w 4.6 () w 1, w D 1 w 1 w = w = 1/4 D 1 D 1 w 1 w (f ) (w 1 ) = 4w 1 f (w 1 ) = 4w 1 w w 1, w (f ) (w 1 ) < 1 w 1 w < 1/4 (1, 1) D 1 w 1 w < 1/4 f F ig4.9 9

f (z) = z z 1 z w 1 w = + w 1 w = + z 1 z D 1, D w 1 w + z 1 z n +, n = a b n z 1, n z (i) n + = a + bi n + = a(a + 1)(a + 1) + b (4a 6) b(a 6a + 1) 4b 3 a + bi = 3/4 3/16 a b 3/4 n + > 0 n + > 0 3/4 ε > 0 (ii) n z 1 z 1 = x + iy H 1, H x a = x + 1 y a = y 30

x b = y y b = x 1 = 4(x + y ) 1 b > 0 x n = x a x b y n = y a y b = (x + 1) y = y (x 1) z 1 z 1 > 1/ > 0H 1 H z 1 x < 1/ y < 0 x < 1/y < 0 (x + 1) y > 0 a < 1/4 1/4 a > 0 ( x 1 ) y = 1 4 a > 0 y (x 1) > 0 x n = x a x b y n = y a y b = (x + 1) y = y (x 1) x, y (1, 1) x 1/ y 0 z 1 (iii) z n z 1 < 0 z 1 z = x + iy = 4(x + y ) 1 b > 0 x n = x a x b 31 > 0 > 0 = (x + 1) y

y n = y a y b = y (x 1) z z > 1/ > 0H 1 H z H 1, H x > 1/ y > 0 x > 1/y > 0 (x + 1) y < 0 a < 1/4 1/4 a > 0 ( x 1 ) y = 1 4 a > 0 x n = x a x b y n = y a y b y (x 1) < 0 = (x + 1) y = y (x 1) < 0 < 0 x, y (1, 1) x 1/ y 0 z (i)(ii)(iii) n z < 0 n + > 0 n z 1 < 0 n z < 0 + n z 1 z = n w 1w > 0 w 1 w (1, 1) 3

4.7 R Ω = R D = ( 5/4, 3/4) 4.7 R, z R P (z) = f (z) P (0) = f (0) P n (0) = f n (0) R {P n (0)} n N {f n (0)} n N R Ω = R D Ω 4.1 Ω R = ( 5/4, 3/4) R Ω = R D = ( 5/4, 3/4) Q.E.D. 4.3 ( 5/4, 3/4) w 1 w < 1/4 n w 1w > 0 D 1 w 1 w = 1/4 D 1 (1, 1) w 1 w < 1/4 ( 5/4, 3/4) (1. 1) w 1 w < 1/4 F ig.4.10 w 1 w < 1/4 F ig4.10 4.4 (i) n + > 0 3/4 ε D( 3/4, ε) D 1 f 33

4.8 (Theorem4.6) Q z 0 Q Q (z) = 0 z Q Q 1 z 0 Q(z) = f (z) (f ) (z) = 4z 3 + 4z = 4z(z + ) (f ) (z) = 4 z z + f (z) z = 0 z = z = f 0 z = f 0 {f n (0)} n N F ig4.10 D D 1 D Q.E.D. 34

1W.D.Crowe, R.Hasson, P.J.Rippon, P.E.D.Strain-Clark, On the struture of the Mandelbar set, Nonlinearity, (1989), 541-553 Robert L DevaneyAn introdution to haoti dynamial Systems Addison- Wesley, 1989 35