( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

Similar documents
6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

中央大学セミナー.ppt


Gmech08.dvi

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite


(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

( ) Note WMAP > 100Mpc [ ] dr ds 2 = c 2 dt 2 a(t) kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) (1) a(t)

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

Microsoft Word - 11問題表紙(選択).docx

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) ( )

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

TOP URL 1

meiji_resume_1.PDF

Gmech08.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (


l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

TOP URL 1

( ) ,

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

untitled

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

pdf

1 2 2 (Dielecrics) Maxwell ( ) D H

TOP URL 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

GJG160842_O.QXD

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

LLG-R8.Nisus.pdf

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

05Mar2001_tune.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α



1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

arxiv: v1(astro-ph.co)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

chap9.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Untitled

Report10.dvi

総研大恒星進化概要.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

QMII_10.dvi

H.Haken Synergetics 2nd (1978)

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Lagrange.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(Maldacena) ads/cft

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

sec13.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

gr09.dvi

Z: Q: R: C: sin 6 5 ζ a, b

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

untitled

( ) Loewner SLE 13 February

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

201711grade1ouyou.pdf

Note.tex 2008/09/19( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

振動工学に基礎

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

Part () () Γ Part ,

Z: Q: R: C:

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

IA

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


『共形場理論』

Transcription:

( ) Note 4 19 11 22 6 6.1 1 Ω m = 1 Ω m.3 6.1.1 : ( ) r-process α 1: 2 32T h(t 1/2 = 1.45 1 1 y) 2 38U(t 1/2 = 4.468 1 9 y) 2 35U(t 1/2 = 7.38 1 8 y) 2 44Pu(t 1/2 = 8.26 1 7 y) β / (J.A.Johnson and M.Bolte: APJ 554 (21) 888) 11.8 Gy t G 19.8 Gy (Gy = 1 9 y) 14 Gyr HR 13 ± 3 ( 1 ) 1

1: ( ) ( ) ( ) 4 13±3 (R.Jimenez and P.Padoan: APJ 498 (1998) 74, E. Carretta et al., :APJ 533 (2) 215) 2: (M15) - ( ( )- ) ( ) ( ) ( Gyr) M.Salaris et al.,astrophys.j.479 (1997):665E672 6.1.2 (ȧ ) 2 H 2 = = 8π kc2 Gρ a 3c2 a 2 + Λc2 3 ρ = ρ m + ρ r + ρ Λ, ρ Λ = Λc4 8πG (1) t = (z = ) H 2 Ω = ρ/ρ c, ρ c = 3H2 c2 8πG Ω k k a 2 H2 t = Z t dt = Z a da da dt = = 1 Ω m Ω r Ω Λ (2a) Z a Z da ah = dz z (1 + z)h 1 + z = a /a ρ m a 3, ρ m = ρ m (a /a) 3 (1) H 2 = 8πG [ ( a ) ] 3 3c 2 ρ m + ρλ k [ { 8πG ( a a 2 = a ) } 3 H2 ρ m + ρλ a H = H [ Ωm (1 + z) 3 + Ω Λ + Ω k (1 + z) 2] 1/2 3H 2 c2 k a 2 H2 ( a ) ] 2 a (3) (4a) (4b) (3) t = 1 H Z z dz (1 + z)[ω m (1 + z) 3 + Ω Λ + Ω k (1 + z) 2 ] 1/2 (5) 2

z 3 Ω Λ = Ω k = Ω Λ = 3: ( ) Ω m = Ω m = 1, Ω Λ = Ω m > 1, Ω Λ = Ω m.26,ω Λ.74, Ω k ( ) Ω m w { (13)} w=-1 WMAP === 2 1 1 3 H (1 + z) 3/2, t Ω m === 1 1 H 1 + z t Ω m=1 (6) z= t = 1 H 132 Ω k = 1, Ω Λ = Ω m = (7a) t = 2 1 88 Ω k = Ω Λ =, Ω m = 1 (7b) 3 H Ω k, Ω Λ t = 2 [ ] 1 1 + ΩΛ Ω log Λ =.74 === 1.4H 3 H ΩΛ 1 1 = 137 (8) ΩΛ 6.1. Ω k = (5) [ t = 2 { }] 1 ΩΛ log (1 + z) 3/2 + (1 + z) 3 H ΩΛ Ω 3 + Ω m m Ω Λ (9) 3

( ) 12 15 Ω m = 1 t 2/3H 9 1 6.2 Ia Ia 199 (z 1 Ia (Si) ( 4 ) ( 4 ) ( 5 ) II I Ia 4: Ia ) SNIa Si Ia CCD 3 2 ( 5) 199 The Supernova Cosmology Project The Hi-z Supernova Search Team 2 z 1 Ia * 1) * 2) (HST= Hubble Space Telescope) 5 HST ( 6) * 1) The Hi-z Supernova Search Team; A.G.Riess et al., ; Astronom. J. 116 (1998) 19-138, The Supernova Cosmology Project; S.Perlmutter et al.,; Astrophys. J. 517 (1999) 565-586 * 2) 4

図 5: (a) Ia 型超新星は白色矮星が発達した伴星を持ち 伴星からの物質降着が炭素の爆発的燃焼を引き起こす 後には何も残らない (b) 超新星探索法: CCD カメラで日を置いて撮影し 最初の映像 (3 週間前) から現在の映像を引き算する コンピューター処理による大量処理 が可能である なお 地上観測より衛星観測の方が遙かに鮮明な写真が得られる 右上に同じ映像をハッブル望遠鏡で撮影した図を示す (http://www-supernova.lbl.gov/public/figures/bigcomposite.jpg) 図 6: 加速膨張の証拠: 見かけの明るさを距離指数 (µ = m M 式 (36) 図 12 参照) で表し z の関数としてプロット 挿入図は 等速一様 膨張 (ΩM = ) と仮定したときの距離指数との差 点線より上が見かけ上暗い加速膨張を 点線から下が見かけ上明るい減速膨張を示す 超 新星は 赤方遷移zの関数として 近傍 (z. 1) で暗く遠くで明るい すなわち 宇宙初期は減速膨張 途中から加速膨張に転じた 挿入図 一番上の線は 当初疑われた星間塵の影響曲線 A.G.Riess et al. The Astrophys. J. 659 (27) 98-121 図 6 は 超新星光度の見かけの明るさを距離指数 [µ = (m M) 式 (36) 参照] で表したデータを さらに等速膨張 (ハッブル定数が定数) の時の値を差し引いて減速から加速への変化を見やすくした図を挿入図として入れてある 5

6.3 ä a = 4πG Λc2 (ρ + 3P) + 3c2 3 ä = G M ( a 2 1 + 3 P ) + Λc2 ρ 3 a, M = 4π ( ρ ) 3 a3 c 2 1 * 3) (11) * 4) 6.2. (P vac = ρ vac ) (1) (11) ( 4 ) (1) P = wρ, w < 1 3 ( w = 1) (13) 7: SNIa( ) CMBR( ) Ω Λ Ω m (Ω m + Ω Λ + Ω k = 1) D.N.Spergeletal.,; Astrophys.J.S17(27)377 48 * 3) * 4) CMBR (Ω = 1) Ω M.3 WMAP 22 Ω m + Ω Λ + Ω k = 1 7 H 2 = 8π kc2 Gρ 3c2 a 2 + Λc2 (12) 3 (1) Λ ρ Λ = Λc 2 /8πG P Λ = ρ Λ 6

6.4 12 (fine-tuning problem) (E Pl = G 1/2 1 19 GeV ) E 4 ρ V (predicted) M 4 Pl = 176 GeV 4 (14) ρ V (observed).75 2 1 29 h 2 g c 2 cm 3 = (3meV ) 4 1 47 GeV 4 (15) 12 14 12 (SUSY) SUSY 1GeV 5-6 Ω Λ = Why now (coincidence problem) * 5) a 3 a 4 const. ρ m ρ Λ 12 why now ( ) (Quintessence) * 6) w = p Q = Q 2 /2 V (Q) 1 Q 2 << V (Q) ρ Q Q 2 (16) /2 +V (Q) +1 Q 2 >> V (Q) w w < ( Q 2 >> V (Q)) ( Q 2 << V (Q)) ( 8 ) (V = V e λκq ) * 7) (attractor ) ( 8 ) attractor Q Q m Q = V (Q) H = 1 33 ev * 8) * 5) z Ω m.3(1+z) 3, Ω Λ =.7 = const. Ω Λ = Ω m z.3 z >> 3 Ω Λ /Ω m <<.1 T E Planck 1 19 GeV z 1 32 (T.1MeV ) z 1 9 * 6) 4 5 5 * 7) 1 Q * 8) 7

8: ( ) Q ( ) (attractor) ( ) attractor ( ) T.Barreiro, E.J.Copeland and N.J.Nunes; Phys. ReV. D61 (2) 12731 2 Q (3 mev) SUSY (sneutrino) * 9) Quintessence K-essence Tachyon field Dilaton field Chaplygin Gas Phantom (w < 1) w a w(a) = w + w 1 z, or w(a) = w + w a (1 a/a ) = w + w a z 1 + z (17) 6.5 P = wρ, (w = ) ( ) ρ X dρ ρ + P + 3da a = (18) ρ X a 3(1+w) (19) w = 1/3,, 1 * 1) (23) d L = a r(1 + z) Ω k= === 1 + z H Z z cdz [Ω m (1 + z) 3 + Ω X (1 + z) 3(1+w) ] 1/2 (2) * 9) E.J.Copeland, M.Sami and S. Tsujikwa Int. J. Mod. Phys. D15: 1753-936 (26) [hep-th/6357]. * 1) 6.6 8

w = 1, Ω X Ω Λ Ia GRB (Gamma Ray Burst) (LSS=Large Scale Structure) w 9 WMAP3 9 1 CMBR LSS z 2 1 GRB z 6 z w = 1 9: ( ) ( )WMAP,3 ( ) w =.926 +.51.75 ApJS 17 27 377-48 1: ( ) CMB LSS z 1σ 1,2,3 1 (P = ρ w ) w (z.5) (Y.Wang and M.Tegmark; Phys. Rev. Lett. 92 (24) 24132) ( ) GRB (Gamma Ray Burst) z 7 z Ω m =.369 Λ CDM Ω m =.416, Ω tot = 1.115 Ω m = 1 (F.Wright; astro-ph/71584) 9

6.6 z=4 1/5 5 r (luminosity disatance) I d L L L = 4πd 2 LI (21) d L r t t + t (r=) t t + δt r = t = t 4π(a r) 2 n γ T 3 a 3 E γ /hν ν/ν = δt /δt = 1 + z (21) Lδt hν = 4πa2 r 2 Iδt hν (22) d L = a r(1 + z) (23) r (1+z) (angular diameter distance) D δθ d A = D/δθ d A = d L r s = rδθ t D = a(t)s d A = D δθ = a(t)rδθ δθ r = a(t)r = a r 1 + z = d L (1 + z) 2 (24) 6.6.1 z r z r r l ( = ) dl = dr 1 kr 2 ds 2 = dl dt [dl = cdt/a(t)] a z t= r t r= l = Z r Z dr t = cdt Z a 1 kr 2 a(t ) = (4b) === 1 a H Z z (25) cda Z z a(t) a 2 H(a ) = cdz H(z (26) ) cdz [Ω m (1 + z) 3 + Ω Λ + Ω k (1 + z) 2 ] 1/2 Ω k = 1 Ω m Ω Λ (27) 1

l z r z (k= r = l) z l = cz [ ( 1 1 a H 2 + Ω m 4 Ω ) ] Λ z + O(z 2 ) = cz 2 a H d L = a r(1 + z) = cz [ ( ) ] 1 q 1 + z + O(z 2 ) a H 2 r d A = a 1 + z = cz [ ( ) ] 3 + q 1 z + O(z 2 ) a H 2 [ 1 ( 1 + q 2 ) ] z + O(z 2 ) (28a) (28b) (28c) z d L d A c H z + O(z 2 ) (29) q ä/ȧ ȧ/a = ä a 2 H (3) ä a = 4πG Λc2 (ρ + 3P) + 3c2 3 ( q = 1 + 3P ) Ωm ρ m 2 Ω Λ (31) q = Ω m 2 Ω Λ (32) z 2 r = l r l Z r l = dr 1 kr 2 c sinh[(h H a Ωk /c) Ω k a l] Ω k > = r = l Ω k = c sin[(h H a Ωk /c) Ω k a l] Ω k < r Ω k = kc 2 /(a H ) 2 k (33) r = l[1+o(l 2 )] O(z 3 ) z (28b)(28c) 11 z z 1 z (33) I L m M L d L m = 2.5log 1 I I = 2.5log 1 L + 5log 1 d L +C I = 2.53 1 8 Wm 2 * 11) (34) 11

11: d A d L z Ω Ω m λ Ω Λ (http://www-utap.phys.s.utokyo.ac.jp/ suto/) d L = 1pc M = 2.5log 1 L L L = 78.7L, M = 4.74 (35) L 1pc I m M = 5log 1 d L 1pc (distance modulus) (36) m M (m-m) d L 12 (m-m) z 12: (m-m) z * 11) α ( ) 12

6.7 6.1: k= t = t(z) y = ΩΛ Ω m (1 + z) 3/2 t = 1 H Z z dz (1 + z)[ω Λ + Ω m (1 + z) 3 ] 1/2 (37) Z Ω Λ Ωm (1+z) 3/2 t = 2 1 dy 3 H = 2 1 [ log(y + ] Ω Λ y ΩΛ 1 + y 2 3 2 Ωm + 1) (1+z) 3/2 H ΩΛ [ = 2 { }] 1 ΩΛ log (1 + z) 3/2 + (1 + z) 3 H ΩΛ Ω 3 + Ω m m Ω Λ (38a) (38b) 6.2: S V E = ρ V V F x E = ρ V xs ( ) P P = F S = 1 E S x = ρ V (39) 13: 2 1 du = PdV, U = ρv dρ dv P = ρ = (ρ + P) (4) 13