1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Gmech08.dvi

高等学校学習指導要領

高等学校学習指導要領

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

i


Gmech08.dvi


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

all.dvi

Gmech08.dvi


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Acrobat Distiller, Job 128

Chap11.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

A

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

³ÎΨÏÀ

pdf

Note.tex 2008/09/19( )

meiji_resume_1.PDF

応力とひずみ.ppt

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1

notekiso1_09.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Part () () Γ Part ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

TOP URL 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

all.dvi

The Physics of Atmospheres CAPTER :

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

all.dvi

II 2 II

body.dvi

sin.eps

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

sec13.dvi

i

II ( : )

重力方向に基づくコントローラの向き決定方法

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


1


4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

mugensho.dvi


( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

I 1

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Transcription:

1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1

1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2 > 0) (q 1 q 2 < 0) MKA k k = 1 ε 0 = 8.854 10 12 C 2 N 1 m 2 1.2 r 1, r 2 2

1.3 r (1,2) q 1, q 2 q 1 q 2 > 0 1.4 r (1,2) q 1, q 2 q 1 q 2 < 0 3

r 1 r 2 r 2 r 1 1.1 q 1 q 2 r 1 r 2 r 2 r 1 r 1 r 2 r 1 r 2 r 2 r 1 r 1 r 2 q 1 q 2 F 12 F 12 = q 1q 2 1 r 1 r 2 2 r 1 r 2 r 1 r 2 (1.2) = q 1q 2 r 1 r 2 r 1 r 2 3 (1.3) 2 1 F 21 F 21 = q 1q 2 1 r 1 r 2 2 r 2 r 1 r 1 r 2 (1.4) = q 1q 2 r 2 r 1 r 1 r 2 3 (1.5) q 1 q 2 3 r 1, r 2, r 3 q 1, q 2, q 3 q 1 q 2, q 3 F 1(23) F 1(2,3) = F 12 + F 13 = q 1q 2 r 1 r 2 r 1 r 2 3 + q 1q 3 r 1 r 3 r 1 r 3 3 (1.6) F 12, F 13 (??) q 1 q 2 q 1 q 3 r 1, r 2,, r N q 1, q 2,, q N q 1 q 2, q N F 1(2 N) 4

1.5 q 1, q 2, q3 1.6 N 5

F 1(2 N) = F 12 + F 13 + + F 1N = N F 1i (1.7) i=2 i 6

1. 1cm 2. r 0 = (1, 1, 1)[m] 1C r 1 = (3, 3, 3)[m] 2C 3. r 1 = (1, 1, 1)[m] 1C r 2 = ( 2, 2, 2)[m] 2C r = (x, y, z)[m] 2C 0 7

1.2 r q r 1 q 1 F F = qq 1 r r 1 r r 1 3 (1.8) r, r 1 q 1 r r 1 q q 1 r 1 r q 2 1C +q[c] 1 +q[c] q[c] +q[c] q[c] 1C +q[c] q[c] ±q[c] r q r 1 q 1 F 8

1.7 +q 1.8 ±q F F = qq 1 r r 1 r r 1 3 = E( r)q (1.9) E( r) = q 1 r r 1 r r 1 3 (1.10) 9

r 1 q 1 r q q E( r) r 1 q 1 r q 1.9 r 1 q 1 r E( r) r q F = E( r)q F (1.10) q = 1 1C r 1, r 2,, r N q 1, q 2,, q N r E( r) E( r) = = E i ( r) = N i=1 q i r r i r r i 3 N E i ( r) (1.11) i=1 q i r r i r r i 3 (1.12) (1.11) i 1 N q 1,, q N 10

E i ( r) r i q i 1 2 10 23 1m 3 ρ V Q V Q/V r ρ( r) ρ( r) x, y, z ρ( r) i r i x, y, z x i, y i, z i Q i Q i = ρ( r i ) x i y i z i r i Q i r E( r) = i ρ( r i ) r r i r r i 3 x i y i z i r E( r) x i, y i, z i 0 11

1.10 E( r) = = lim x i, y i, z i 0 ρ( r ) r r = 1 i ρ( r i ) r r i r r i 3 x i y i z i r r 3 dx dy dz ρ( r )( r r ) dv (1.13) r r 3 ρ( r ) 3 1m λ λ r λ( r) r C s i i r i Q i Q i = λ( r i ) s i 12

1.11 s i r E( r) = i λ( r i ) r r i r r i 3 s i C r E( r) s i 0 E( r) = = lim s i 0 i C λ( r i ) r r i r r i 3 s i λ( r ) r r r r 3 ds (1.14) 1m 2 σ σ( r) r i r i x i, y i σ( r i ) x i y i r E( r) = i σ( r i ) r r i r r i 3 x i y i 13

1.12 r i E( r) x i, y i 0 E( r) = = lim x i, y i 0 i σ( r i ) σ( r ) r r = 1 r r i r r i 3 x i y i r r 3 dx dy σ( r )( r r ) d (1.15) r r 3 14

λ 0 z z z + λ( r) = λ 0 x, y, z (1.14) E x ( r) = C = λ 0r x λ( r ) r x r x r r 3 ds 1 [r 2 x + r 2 y + (r z z ) 2 ] 3/2 dz (1.16) E y ( r) = C = λ 0r y λ( r ) r y r y r r 3 ds 1 [r 2 x + r 2 y + (r z z ) 2 ] 3/2 dz (1.17) E z ( r) = C = λ 0r y λ( r ) r z r z r r 3 ds 1 [r 2 x + r 2 y + (r z z ) 2 ] 3/2 dz (1.18) r x r = (R, 0, 0) (1.17) r y = 0 E y ( r) = 0 (1.18) E z ( r) z 1.13 z λ 0 15

E z ( r) = 0 E x ( r) (1.16) E x ( r) = λ 0R 1 (R 2 + z ) 3/2 dz (1.19) R > 0 z = R tan θ dz = R cos 2 θ dθ z (, + ) θ ( π 2, π ) (1.19) 2 E x ( r) = λ π 2 0R = λ 0R = λ 0 R π 2 π 2 π 2 π 2 1 R R 3 (1 + tan 2 θ) 3/2 cos 2 θ dθ π 2 1 R 2 1 cos3 θ cos 2 θ dθ cos θ dθ = λ 0 R = λ 0 2πε 0 R sin θ π 2 π 2 (1.20) E( r) x x z z z R E( r) = λ 0 2πε 0 R E( r) = λ 0(r x, r y, 0) 2πε 0 r 2 x + r 2 y 16

1.14 ρ( r) ρ( r) 0 1 x λ(x) a Q x 0 λ(x) x 0 a/2 x 0 + a/2 λ 0 Q λ 0 a = Q λ 0 = Q/a { Q/a, x0 a/2 < x < x λ(x) = 0 + a/2 0, a 0 λ(x) x 0 Q 17

δ(x) 1 δ(x x 0 ) = lim a 0 Q λ(x) Q = 1 λ(x) x 0 0 + infty δ(x x 0 )dx = 1 δ(x x 0 ) x 0 0 x 0 f(x) δ(x x 0 ) f(x) δ(x x 0 )f(x) + x 0 f(x) f(x 0 ) + δ(x x 0 )f(x)dx = f(x 0 ) r 1 Q ρ( r) ρ( r) = Qδ(r x r 1x )δ(r y r 1y )δ(r z r 1z ) r x, y, z r 1 x, y, z x, y, z 3 1.3???? Q > 0 R E( r) E( r) n( r)d = E( r) d (1.21) 18

1.15 R n( r) r n( r)d d 1.21 R n( r) = r/ r = r/r = r/r (1.10) E( r) n( r)d = = = Q r r 3 r rd d Q R 4 Q R 2 r r d = Q ε 0 (1.22) 1.16 n( r) r 19

d 4πR 2 E( r) n( r)d R 1.2 r σ L ( r) r e( r) e( r) = E( r)/ E( r) // e( r) : σ L ( r) = A E( r) = AE( r)) (1.23) A 1 (1.22) e( r) = n( r) E( r) n( r)d = E( r) e( r) n( r)d = σ L ( r)d (1.24) N L (1.22) 1.17 E( r) n( r) = r 20

(1.22) (1.22) σ L ( r)d σ L ( r)d σ L ( r)d i σ L n A n lim 0 r i i A i n i σ L ( r i ) i r i 1.18 21

1.19 A i θ i θ i = π 2 n i 0 n i i cos θ i n i = σ L ( r i ) i cos θ i cos θ i = e( r i ) n( r i ) n( r i ) A i A i n i n i = σ L ( r i ) e( r i ) n( r i ) i N L i 0 n i N L N L = lim i 0 i n i = lim σ L ( r i ) e( r i ) n( r i ) i i 0 i = σ L ( r) e( r) n( r)d (1.25) σ L ( r) e( r) n( r)d = σ L ( r) e( r) n( r)d (1.26) 22

σ L ( r) e( r) = E( r) E( r) n( r)d = E( r) n( r)d (1.27) N L (1.25) (1.25) 1.20 (1.25) (1.25) e( r) n( r) e( r) r n( r) e( r) n( r) > 0 e( r) n( r) < 0 (1.25) 1.20 23

σ L ( r) e( r) n( r)d = σ L ( r) e( r) n( r)d E( r) E( r) n( r)d = E( r) n( r)d (1.22) Q ε 0 N L = σ L ( r) e( r) n( r)d = E( r) n( r)d = E( r) n( r)d = Q (1.28) ε 0 ε 0 (1.12) N r E( r) E i ( r) E i ( r) q i E( r) = i E i ( r) N E( r) n( r)d = E i ( r) n( r)d = i i q i E i ( r) n( r)d = i ε 0 = Q ε 0 (1.29) 24

Q E( r) n( r)d ε 0 ρ( r) E( r) n( r)d = 1 ( ) ε 0 = 1 ρ( r)dv (1.30) ε 0 V V (1.30) *1 V a σ 0 r r r σ 0 > 0 r σ 0 < 0 r R E( r) n( r)d = E( r)d = E(R) d = E(R) 4πR 2 = 1 ( ) (1.31) ε 0 *1 25

E(R) R (1.30) R < a R > a 4πa 2 σ 0 0, r < a E( r) = a 2 r 2 σ 0, r > a 0, r < a E( r) = a 2 r 3 σ 0 r, r > a z λ 0 z z z z R t, b s E( r) n( r)d = E( r) n( r)d + E( r) n( r)d + E( r) n( r)d t b t, b t, b E( r) n( r) 0 s z s E( r) n( r)d = E( r)d s s = E(R) d s = E(R) 2πR (1.32) E(R) z R (1.30) λ 0 ε 0 E( r) = E(R) = λ 0 2πε 0 R 26 (1.33)

1. a > b σ a, σ b a 0 2. a ρ 0 27