科学研究費補助金新学術領域研究 スパースモデリングの深化と高次元データ駆動科学の創成 最終成果報告会 (207/2/8-20) NMR (NMR) NMR! SpM NMR NMR NMR (MaxEnt) (CS) NMR (SpM) NMR NMR ( ) 2 NMR NMR 2 NMR NMR NMR n n- 2 NMR E-mail: kigawa@riken.jp
2 (non-uniform sampling, NUS) 3 MaxEnt [-3] CS [4,5] 3 NMR (C0-3) 2 (AMP) NMR 2 H- 5 N HSQC Biological Magnetic Resonance Bank (BMRB) 4 (AMP) Smoothelin CH 2 H- 5 N HSQC 4 5 N 28 32 2
Lp (p=0 or ) IRLS(iterative reweighted least squares) p 0 L0 n NMR n- n- n 2 3 2 3 NMR 5 mddnmr[4] NOESY 3 NMR 5 IRLS NMR NMR (B0-2) 20 9 2 H- 5 N HSQC 3 in-cell NMR 3 5 N NMR [6] 3 C 5 N 3 C 2 HN(CO) i i- 3
[7-] Stable isotope encoding; SiCode 6 [2] 6 REMC [3] REMC [4] 7 BMX SH2 (Y)C83 (H)N97 4, REMC (H)N+(Y)C 7 2 3 4 [4] REMC 0 20 4
in-cell NMR HSQC HN(CO) in-cell NMR (L)S57 8 HN(CO) BEST-HN(CO) in-cell NMR REMC 63 REMC (L)S 8 in-cell NMR 4 NMR NMR NMR NMR 4 2 NOESY (Nuclear Overhauser Effect correlated SpectroscopY) 2 I kl g = r I NOE r g g 3. NOE 2. 3. SA. NOE NOE r I g 2. 3.,500 0,000 5 6 kl
0-20 SA Nilges [5,6] (MCMC) NMR [7,8] ( q D) P( q ) P( Dq ) P µ q D NMR NOE NOE Ikl k l 2 5-6 L i P n ( I kl q ) = Õ Li ( I kl q ) i= öö 2 kl ( I ) ç ç kl q = exp - ln 2 2 2ps I è 2s è µ øø kl n s µ m æ = ç å m r r è j= æ -/ 6-6 ö k jl j ( s, q, g ) ( s ) P( q) P( g ) ( q ) = exp( be( q )) Z( b ) s ~ G[ a, b] P = P ø P - [, ] g ~ LN µ g s g P(q) Z b a b s g q MCMC MD MC MD [9] q MD s g [20] MD MC æ I 6
MC, 9 NOESY (NOE ) 7. NOE NOE NMR NOE NOE NOE NOE. MD AMBER 9 (amber03) 2 MD MC 300-400K 2 9 7 NOE 0 0 ( ), ( ), ( ) (a). NOE ( ) (b) c 3 C, 5 N, 3 C-aromatic NOESY MC ( )(c) 9 3 0 ( ) ( ) Root Mean Square Deviation (RMSD).53 0.82 7
NMR (in-cell NMR ) (,2). TTHA78 GB 2 ( ) GB de novo ( ),2 in vitro GB TTHA78 NMR in vitro in-cell NMR in vitro ( ) in-cell NMR in vitro ( ) 2 ( ) in vitro NOESY (a).. GB (b-d). in vitro GB (e). in vitro GB RMSD RMSD (f)..76 A 0.66A pseudo-contact shift (PCS) paramagnetic relaxation enhancement (PRE)30 A PCS 40A PCS PCS é 3 ù d = ê Dc ( 3cos2q -) + Dc sin 2q cos2f 3 ax rh 2pr ë 2 ú û d pcs PCS r, q, j, Dc PCS NOE rho 3 in-cell NMR NOE NOE 00 3 00 RMSD NOE 8
PCS RMSD 00 rho ( ) ( ) ( ) RMSD 5.32 A.46 A rho 5.28 A.52 A NOE NOE PCS NOE 3 PCS PRE NMR NMR (in-cell NMR) 4 rho References [] J. C. J. Barna and E. D. Laue, J. Magn. Reson., 75:384-389 (987). [2] P. Schmieder et al., J. Biomol. NMR, 4:483-490 (994). [3] D. Rovnyak et al., J. Magn. Reson., 70:5-2 (2004). [4] K. Kazimierczuk and V. Y. Orekhov, Angew. Chem. Int. Ed., 50:5556-5559 (20). [5] S. G. Hyberts et al., J. Biomol. NMR, 52:35-327 (202). [6] M. Kainosho and T. Tsuji, Biochemistry, 2:6273-6279 (982). [7] M. J. Parker et al., J. Am. Chem. Soc., 26:5020-502 (2004). [8] F. Hefke et al., J. Biomol. NMR, 49:75-84 (20). [9] I. Maslennikov et al., Proc. Natl. Acad. Sci. USA, 07:0902-0907 (200). [0] F. Löhr et al., J. Biomol. NMR, 52:97-20 (202). [] P. S. Wu et al., J. Biomol. NMR, 34:3-2 (2006). [2] T. Kasai et al., J. Biomol. NMR, 63:23-22 (205). [3] K. Nagata et al., Neural Netw., 28:82-89 (202). [4] T. Kasai et al., J. Phys. Conf. Ser., 699:02003 (206). 9
[5] W. Rieping, M. Habeck, M. Nilges, Science, 309:303-306 (2005). [6] M. Habeck, M. Nilges, W. Rieping, Phys Rev E, 72:0392--9 (2005). [7] T. Ikeya et al., J. Phys. Conf. Ser., 699:02003 (206). [8] T. Ikeya et al., Sci. Rep. 6, 3832:- (206). [9] Yamashita, H., Endo, S., Wako, H., Kidera, A., Chem. Phys. Letter., 342:382-386 (200). [20] Girolami, M., Calderhead, B., J. R., Statist. Soc. B, 73:23-24 (20). 0