(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4
|
|
|
- まいえ おとべ
- 7 years ago
- Views:
Transcription
1 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2
2 (a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4
3 1: Zachary [11] [12] [13] World-Wide Web [14] [15] [16] [17] i k i k i k i (k i 1)/2 q i i q i C i = q i k i (k i 1)/2 (1) i 3 k 1 = 3 2, 3, 4 (2, 3), (3, 4), (4, 2) 1 5 3: q 1 = 1 C 1 = 1/3 N i = 1, 2, 3,..., N N N A A ij i j 1 0 3
4 (2) 1(c) 1(d) i j A ij = 1 1(a) (a) 1 4(b) 4 5 µ 200 σ 15 n(k) e (k µ)2 /(2σ 2 ) (3) n(k) = λ k e λ /k! λ µ = λ σ = λ k n(k) k γ (4) (3) (4) (4) (4) 2 2 γ (3) σ (4) 4 Barabási-Albert [13]
5 (a) (b) 4: (a) (b) (a) (b) : (a) (b)
6 4 Watts-Strogatz [18] universality universal gravity T c (T T c ) γ γ (T c T ) β β (T T c ) γ (T c T ) β Z 2 Z 2
7 2 4 5
8 (a) (b) 6: Barabási-Albert m = 2 (a) m = 2 (b) m = 2 (5) 4 Barabási-Albert [13] Watts-Strogatz [18] 4.1 Barabási-Albert Barabási-Albert [13] (i) m 6(a) m 1,2,3 (ii) (a) n m m i = 1, 2,..., N k i N m p i = k i N i=j k j (5) (b) N 1 (5) preferential attachment
9 5(a) (b) hub k n(k) k 3 (6) (4) γ = 3 k (5) [19] p i = k i + a N i=j (k j + a) (7) a (6) n(k) k 3+a/m (8) γ 3 2 γ 3 m a 0 (6) t m t = t N(t) = m + t m(m 1)/2 m E(t) = m(m 1)/2 + mt i = 1, 2,..., N(t) k i (t) t N(t) [ ] m(m 1) k j (t) = 2 + mt 2mt (9) 2 j=1 (5) p i (t) k i(t) 2mt (10) i t + 1 m mp i k i
10 dk i dt = mp i = k i 2t (11) ( ) 1/2 t k i (t) = m (12) t i t i i i m k i (t i ) = m (12) t ki n(k) k (12) t i = t(m/k) 2 t k m [ ( m ) ] 2 N(t) N(t i ) = t t i = t 1 k (13) n(k) (13) k (6) (5) n(k) = 2m2 t k 3 (14) p i = k i + a N i=j (k j + a) (15) a (14) n(k) k 3+a/m (16) γ 3 2 γ 3 m a 0 p i p i = 1 N 1 t (17) (11)
11 (a) (b) 7: Watts-Strogatz (a) m N (b) dk i dt = m t (18) k i = m + m log t t i (19) k i = m[1 + log(t/t i )] n(k) exp( k/m) (20) 4.2 Watts-Strogatz Watts-Strogatz m N 7(a) Nm/2 pnm/2 7(b) p = 0 p = 1 p = 0 7(a) m/2 1 x x/(m/2)
12 N/2 N/(m/2) L 1 N/2 N x=1 x m/2 2N m (21) m m(m 1)/2 m 2 m 3 m/2 m/2 1 1 [ ( m )] 2 (m 2) m 2 = 3 m(m 2) (22) 8 C = 3(m 2) 4(m 1) (23) p = 1 Watts-Strogatz N N(N 1)/2 Nm/2 m/(n 1) C = m N 1 (24) 8 l N(l) m N(l) m(m 1) l 1 m l (25)
13 8: N(l) N(l 1) m N L N m L (26) L ln N (27) p = 0 O(N 1 ) p = 1 O(N 0 ) p = 0 p = 1 O(N 1 ) p O(N 0 ) O(N 1 ) 5 4 [20] 3
14 [21 25] [26 29] [26] (i) (ii) q H = i j (A ij γp ij )δ(σ i, σ j ) (28) q (28) σ i 1 q δ(σ i, σ j ) σ i = σ j 1 A ij A p ij i j γ [26] (28) A ij > γp ij i j [26]
15 4 6 communicability [30, 31] 6.1 Communicability 1 9(a) 2 9(b) 3 9(a) 9(b) 1 Estrada communicability [30,31] G ij = n=0 1 n! (An ) ij (29) A 1 (A n ) ij i j n (A n ) ij = i 1,i 2,...,i n 1 A ii1 A i1 i 2 A i2 i 3 A in 1 j (30) (a) (b) 9: (a) 2 (b) 3
16 (a) (b) 10: (a) (b) A 1 i i 1 i 2 i n 1 j (29) i j 1/n! 1/n! (29) G ij = ( e A) ij (31) G ij (β) = n β n n! (An ) ij = ( e βa) ij (32) β A 10(a) H (32) communicability [30,31] λ µ ψ µ N N N µ = 1, 2,..., N (31) G ij = N ψ µ (i)ψ µ (j)e λµ (33) µ=1 ψ µ (i) ψ µ i A H = A λ 1 λ 1 λ 2 λ 2 10(b)
17 (a) (b) : (a)zachary [11] (b) [16] i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) λ 3 i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) (33) ψ µ (i) ψ µ (j) G ij = G ij ψ 1 (i)ψ 1 (j)e λ 1 = µ ++/ ψµ (i)ψ µ (j) e λµ µ + / + ψµ (i)ψ µ (j) e λµ. (34) i j G ij communicability network 6.2 [32] 11
18 2: [11] [16] [17] [12] / 34/78 297/ / / ( ) ( 0) ( 0) ( 268) ( 844) 29.4% 5.1% 29.3% 4.5% ( ) ( 0) ( 0) ( 265) ( 5) 0% 0% 6.9% 0% 12: 11(b) 2 2 [32] 12 12
19 (a) (b) 13: (a)zachary 12 (b) [32] 7 [1], 2005 [2], 2010 [3] A.-L. Barabási Linked: The New Science of Networks (Perseus Publishing, 2002) [4] M. Newman, A.-L. Barabási, D.J. Watts The Structure and Dynamics of Networks (Princeton University Press, 2006) [5] M. Newman Networks: An Introduction (Oxford University Press, 2010) [6] R. Cohen, S. Havlin Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010) [7] E. Estrada The Structure of Complex Networks: Theory and Applications (Oxford University Press, 2012)
20 [8] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74 (2002) 47 [9] S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079 [10] M.E.J. Newman, SIAM review 45 (2003) 167 [11] W.W. Zachary, J. Anthoropological Res. 33 (1977) 452 [12] M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98 (2001) 404 [13] A.-L. Barabási, R. Albert, Science 286 (1999) 509 [14] R. Albert, H. Jeong, A.-L. Barabási, Nature 401 (1999) 130 [15] V. Batagelj, A. Mrvar, [16] D.J. Watts and S.H. Strogatz, Nature 393 (1998) 440 [17] H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 441 (2001) 411 [18] D.J. Watts, S.H. Strogatz, Nature 393 (1998) 440 [19] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85 (2000) 4633 [20] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80 (2008) 1275 [21] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424 (2006) 175 [22] G. Szabó, G. Fáth, Phys. Rep. 446 (2007) 97 [23] K. Szhajd-Weron, Acta Physica Polonica B 36 (2005) 2537 [24] A. Grabowski, R.A. Kosiński, Physica A 361 (2006) 651 [25] Q. Li, L.A. Braunstein, H. Wang, J. Shao, H.E. Stanley, S. Havlin, J. Stat. Phys. 151 (2013) 92 [26] J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93 (2004) ; Phys. Rev. E 74 (2006) [27] I. Ispolatov, I. Mazo, A. Yuryev, J. Stat. Mech. (2006) P09014 [28] S.W. Son, H. Jeong, J.D. Noh, Eur. Phys. J. B 50 (2006) 431 [29] P. Ronhovde, Z. Nussinov, Phys. Rev. E 81 (2010) [30] E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) ; ibid. 78 (2008) ; Appl. Math. Comp. 214 (2009) 500 [31] E. Estrada, N. Hatano, M. Benzi, Phys. Rep. 514 (2012) 89 [32] B. Ruben, N. Hatano, in preparation
k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p
The size of the world It is a small world Araseki Hitoshi Can you believe that everyone is at most six steps away from any other person on the Earth? This phenomenon, which is called small world phenomenon,
( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)
a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i
解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ
DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme
DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)
1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r
11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
Various function and toxicity of iron Key words 1) Hentze, M. W. et al: Cell, 117, 285-297 (2004) 2) Ganz, T.: Blood, 102, 783-788 (2003) 3) Nemeth, E. et al.: Science, 306, 2090-2093 (2004) 4) Hentze,
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +
1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)
8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) X hkl 2θ ω 000 2: ω X 2θ X 3: X 2 X ω X 2θ X θ-2θ X X 2-1. ( ) ( 3) X 2θ ω 4 Si GaAs Si/Si GaAs/GaAs X 2θ : 2 2θ 000 ω 000 ω ω = θ 4: 2θ ω
C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B
I [email protected] 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld
Undulator.dvi
X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B
1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1
2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m
1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (
1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (
August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
prime number theorem
For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ
615-851 ryoichi@chemekyoto-uacjp 66-852 onuki@scphyskyoto-uacjp 1 T g T T fragile *2 1 11) 1 9) η T g T g /T *1 τ 198 τ η = Gτ G τ T c η τ 12) strong fragile T c strong η η exp(e/k B T ) 1 2/3 E SiO 2
H.Haken Synergetics 2nd (1978)
27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x
7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)
φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)
φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
sakigake1.dvi
(Zin ARAI) [email protected] http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
eto-vol2.prepri.dvi
( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: [email protected] i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona
Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,
Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q
Chern-Simons E-mail: [email protected] Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+
1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
DVIOUT-fujin
2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................
