Studies on Ion Nitriding of Aluminum and Its Alloys Hideo Tachikawa 400 500 H V 1000 1600 TiN HCl Studies were made on low temperature ion nitriding of aluminum and its alloys by dc glow discharge in nitrogen atmosphere. Aluminum-nitride layers were formed on the surfaces of aluminum and its alloys even at temperatures as low as 450 as a result of argon sputtering prior to nitriding. In this ion nitriding process, not only formation of nitride layers but also sputtering of the formed nitride layers due to nitrogen ion bombardment proceeded simultaneously. The growth rate of the layers strongly depends on nitriding temperature and alloy elements. The sputtering rate depends on nitrogen pressure and glow discharge voltage. Magnesium and silicon in alloys increase the growth rate and titanium, vanadium, manganese, iron and nickel in alloys bring about strong adhesion between the layer and the substrate. Microvickers hardness of the layers ranged from H V 1000 to H V 1600, depending on the kind of alloys. The formed layers showed excellent resistance to wear compared with those of commercially available surface treating such as anodic oxidation, plasma sprays and electrodeposition. The nitriding provides improved corrosion resistance in 1N-HCl. The nitriding treatment can be operated with the apparatus which is similar to a conventional type for ion nitriding of steels. R&D Vol. 27 No. 4 ( 1992. 12 )
Al Sn Si FRM CVD PVD 1 m 660 100Å 10 5 Torr R&D Vol. 27 No. 4 ( 1992. 12 )
10 4 Torr L sec 1 10 5 Torr 100ppm 1Torr 100V101 400 500 400 0.2mg cm 2 h 1 0.7Torr 600V 1h ) 3.8Torr 5005h ) Weight gain of specimen nitrided for 2h after presputtering in hydrogen, nitrogen and argon as a function of nitriding temperature. Equipment for nitriding. Influence of a small amount of O 2 or N 2 in Ar presputtering atmosphere on enhancement of nitriding. R&D Vol. 27 No. 4 ( 1992. 12 )
100ppm AES 100ppm Fig.3 JIS 1050 Scanning electron micrographs of the surfaces sputtered at 600V for 1h in 0.7Torr Ar containing various amounts of O 2 or N 2. Micrographs of cross section of the specimens (a) as presputtered by Ar and nitrided at 500 for (b) 2h in 1.4TorrN 2, (c) 5h in 1.4TorrN 2, (d) 2h in 3.8TorrN 2, and (e) 5h in 3.8TorrN 2. R&D Vol. 27 No. 4 ( 1992. 12 )
400 Relationship between weight change of specimen before and after nitriding and nitriding time under various nitriding temperatures and N 2 pressures. W S W S = A E E 0 P A EE 0 P 1 E E 0 E E 0 de di 0 E 500 EI 1 Fig.6 Fig.7 Relationship between thickness of nitride layer and nitriding time under various nitriding temperatures and N 2 pressures. Relationship between glow discharge parameters and N 2 pressure. R&D Vol. 27 No. 4 ( 1992. 12 )
10ppm H 2 O CO 2 Fig.2 Fig.7 8 1050 7075 1050 4 5 Chemical composition of commercial aluminum and its alloys. Specimen Al Si Fe Cu Mn Mg Cr Zn Ti 1050 Bal. 0.09 0.14 <0.01 0.002 0.031 <0.001 <0.01 0.01 2017 Bal. 0.29 0.30 3.85 0.48 0.55 0.02 0.07 0.013 5052 Bal. 0.09 0.16 0.013 0.039 2.33 0.24 0.10 0.012 6061 Bal. 0.60 0.22 0.20 0.016 0.88 0.041 <0.01 0.01 7075 Bal. 0.15 0.20 1.60 0.01 2.60 0.23 5.60 0.01 319 Bal. 6.12 0.51 3.60 0.51 0.10 0.42 0.01 A390 Bal. 17.10 4.50 0.55 Micrographs of cross section of alloys nitrided for 5h at 450 in 1.4Torr N 2. R&D Vol. 27 No. 4 ( 1992. 12 )
5wt5 A390 Influence of concentration of alloy element in binary aluminum alloys on growth rate of nitride layers. Al Si319 A390 XEPMA Fig.7 Electron microprobe analysis on cross section of nitrided Al-2Mg alloy. Critical thickness causing spalling-off of nitride layer on binary alloys. R&D Vol. 27 No. 4 ( 1992. 12 )
AESAlN SEMFig.12 Al-0.3Ti Al-4Cu Al-0.3Ti EPMA ( Al-Ti Al-V Al-Mn Al-Ni Al-Fe ) 0.7wt 0.6wt500 α Ti 0.55wt V 0.2wt Al-0.3Ti Al-0.2V TiAl VAl Al-Mg Al-Cu Al-Zn Al-Si ) ( Al-Cr ) α α 2 2 Scanning electron micrographs of surface of binnary alloys after spalling-off of nitride layer. Electron microprobe analysis on cross section of nitrided Al-0.3Ti alloy. R&D Vol. 27 No. 4 ( 1992. 12 )
1050 2017 5052 1 4TorrN 2 45015 m 1050 2017 5052 H V 1000 H V 1250 H V 1600 H V 1200 1500 1050 2017 5052 2017 T6 Al A390 3 m FC23 T6 TiN Al ( A390 ) T6 T6 1050 1N AlN at 90 1 T6 500 Comparative diameter of wear scar on specimens, depth of wear track on counter materials and friction coefficient. (Engine oil <SAE 20W-40>, 12.6kg f, 600rpm, 1h) R&D Vol. 27 No. 4 ( 1992. 12 )
1 400 500 100ppm 2 3 4 H V 1000 1600 TiN HCl 1) :, -6(1989), 479 2) :, -9(1987), 847 3) :, -7(1989), 123 4) :, -2(1988), 118 5),, (1974), 81 83, 6) Hodes, E. and Steeg, M. : Aluminum, (1980), 332 7),, :, -2(1982), 82 8),,, :, (1964), 415 9),,, : ref. 8), p. 429 10),, :, (1966), 36 11) Clegg, A. J. and Das. A. A. : Br. Foundryman, -11(1977), 333 12) Donomoto, T. : SAE Tech. Pap. Ser., No. 830252, (1983), 13) Hosking, F. M., Folgar Portillo, F., Wunderlin, R. and Mehrabian R. : J. Mat. Sci., -2(1982), 477 14),, :, -7 (1989), 538 15) :, -821(1987), 469 16),, :, -5(1989), 356 17), :, -4(1972), 259 18) : "", 56, (1982), 12 19),, :, -12(1973), 519 20),, :, -12(1978), 601 21),, :, -9(1979), 391 22), :, -7(1985), 414 23) :, -3(1984), 205 24) :, -8(1988), 485 25) Gaucher, A., Champalier, M. and Polus, E. : Mec. Mater. Electr., (1976), 23 26),, (1986), 1, 27) Suri, A. K., Nimmagadda, R. and Bunshah, R. F. : Thin Solid Films, -2(1979),191 28) Ruppert, W., et al. : "Process for the Production of Titamium Carbide Coatings", U.S. Patent No. 2 962 388(1954) 29) Mattox, D. M. : J. Vac. Sci. Technol., (1973), 47 30) Bunshah, R. F. and Raghuram, A. C. : J. Vac. Sci. Technol., (1972), 1385 31),,, (1989), 2005 2006, 32) :, -10 (1975), 538 33) Slack, G. A. and McNelly, T. F. : J. Cryst. Growth, (1975), 263 34) Mott, N. F. : Trans. Faraday Soc., (1939), 1175 35) Podgurski, H. H., Keller, S. F. and Edwards, J. D. : Proc. Pittsburgh Int. Conf. Surface Reacns,.(1948), 202 36) Gulbransen, E. A. : Rev. Sci. Instr., (1944), 201 37) Gulbransen, E. A. and Wysong, W. S. : J. Phys. and Colloid Chem., (1947), 1087 38),,, :, (1981), 218 39) Rey, M. : Silic. Ind., (1958), 453 40) Geuther, A. : Liebigs Ann., (1862), 238 41) Wolf, J. : Z. anorg. u. allgem. Chem., (1914), 159 42) Fichter, F. : Z. anorg. u. allgem. Chem., (1913), 191 43),,, :, -4 (1984), 182 44),,, :, 8(1967), 241 45) Suri, A. K., Nimmagadda, R. and Bunshah, R. F. : ref 27), p.191 R&D Vol. 27 No. 4 ( 1992. 12 )
46) Lieske, N. and Hezel, R. : J. Appl. Phys., -9(1981), 5806 47) Rauschenbach, B., Kolitsch, A. and Richter, E. : Thin Solid Films, -1(1983), 37 48) Uemura, Y., Tanaka, K. and Iwata, M. : Thin Solid Films, -1(1974), 11 49) :, -1(1978), 10 50) Konuma, M. and Matsumoto, O. : J. Less-Common Met., (1977), 145 51) Matsumoto, O., Konuma, M. and Yasushi Kanzaki : J. Less- Common Met., (1982), 157 52) Rie, K.-T. and Lampe, Th. : Metall., -10 (1983), 1003 53) Rie, K.-T. and Lampe, Th. : Mater. Sci. and Eng., (1985), 473 54) Konuma, M. and Matsumoto, O. : J. Less-Common Met., (1977), 97 55) Karpinski, T. and Rolinski, E. : Proc. Conf. VIII, Celostátne dni Tepelného Spracovania, Czechoslovak Scientific and Technical Society, Bratislava, (1978), 27 56),,, : 16, (1983), 27 57) :, (1973), 117, 58),, :, -7(1984), 377 59) Hansen, M. : Constitution of Binary Alloys(1958), 145, McGraw-Hill Co. 60),, :, -6(1978), 422 R&D Vol. 27 No. 4 ( 1992. 12 )