XFEL/SPring-8

Similar documents
LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp)


LM6172 デュアル高速低消費電力、低歪み電圧帰還アンプ

LM7171 高速、高出力電流、電圧帰還型オペアンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

PowerPoint Presentation

Triple 2:1 High-Speed Video Multiplexer (Rev. C

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 324 V LM LMV321( )/LMV358( )/LMV324( ) General Purpose, Low Voltage, Rail-to-

LTE移動通信システムのフィールドトライアル

news

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

揃 Lag [hour] Lag [day] 35

リードタイプ円板型セラミックコンデンサ(安全規格認定品)樹脂モールド面実装タイプセラミックコンデンサ(安全規格認定品)

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

394-04

OPA277/2277/4277 (2000.1)

AN15880A

LM358

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

チョークコイル・リアクタ

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

年次大会原稿最終.PDF

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig



Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

untitled

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

pc725v0nszxf_j

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

FreeSpace.book

The Plasma Boundary of Magnetic Fusion Devices

LM2940

untitled

音響部品アクセサリ本文(AC06)PDF (Page 16)

〈論文〉興行データベースから「古典芸能」の定義を考える

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

KII, Masanobu Vol.7 No Spring

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and


プリント

Łñ“’‘‚2004


DS90LV011A 3V LVDS 1 回路入り高速差動出力ドライバ

橡

LM150/LM350A/LM350 3A 可変型レギュレータ

HA17458シリーズ データシート

28 Horizontal angle correction using straight line detection in an equirectangular image

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

技術研究報告第26号

LP3470 Tiny Power On Reset Circuit (jp)

土木学会構造工学論文集(2011.3)

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

浜松医科大学紀要


Transcription:

DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B), Hirofumi Hanaki A) A) JASRI, XFEL Joint Project / SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan B) RIKEN, XFEL Joint Project / SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan Abstract XFEL/SPring-8 is under construction, which is aiming at generating coherent, high brilliance, ultra-short femtosecond X-ray pulse at wavelength of 1Å or shorter. The injector consists of a 500kV thermionic gun (CeB 6 ) without a control grid, a beam deflecting system, multi-stage RF structures and ten magnetic lenses. The multi-stage RF structures (238MHz, 476MHz, 1428MHz) are used for bunching and accelerating the beam gradually to maintain the initial beam emittance. In addition, in order to realize linearizing the energy chirp of the beam bunch at three magnetic bunch compression systems after the injector system, we prepared extra RF structures of 1428MHz and 5712MHz. It is important to stabilize the gap voltage of those RF structures because the intensity of X-ray pulse is more sensitive for a slight variation of the RF system in the injector. We developed some stable amplifiers for those RF structures, and confirmed the amplitude and phase stability of an RF signal outputted from the amplifiers. The measurement results achieved nearly the requirement of design parameters. In this paper, we describe the development status and the achieved performances of RF equipment of the injector section. XFEL/SPring-8 1 E-mail: asaka@spring8.or.jp 906

± 907

Cavity or Structure SHB cav. Booster cav. L-correction cav. L-APS acc. C-correction cav. Frequency 238 MHz 476 MHz 1428 MHz 1428 MHz 5712 MHz Type of Amplifier Solid-state Solid-state + IOT Solid-state Solid-state + Klystron Solid-state + Klystron Output power P out 14 kw 120 kw 10 kw 30 MW 50 MW Pulse width 100 µs 50µs 10µs 6µs 0.5µs Tolerance of P out stability ± 0.02% (σ) ± 0.02% (σ) ± 0.06% (σ) ± 0.02% (σ) ± 0.2% (σ) Tolerance of phase stability ± 0.01 (σ) ± 0.02 (σ) ± 0.06 (σ) ± 0.06 (σ) ± 0.06 (σ) 4.1 Frequency 238 MHz 476 MHz 1428 MHz Type of amplifier Solid-state Solid-state Solid-state Solid-state +IOT Number of amplifier 4 1 1 4 Pulse width 100 µs 50 µs 50 µs 20 µs Repetition rate 60 Hz 60 Hz 60 Hz 60 Hz Input power 1 mw 1 mw 1 kw 1 mw Output power 3.5 kw 2 kw 120 kw 2.5 kw (5.0 kw max.) (2.9 kw max.) (3.5 kw max.) Gain 65.4 db 63 db 20.8 db 64 db Stability of output power 0.011%/min. (std.) 0.026%/min. (std.) 0.052%/min. (std.) Stability of phase 0.02 /10 min. (std.) 0.014 /min. (std.) 0.014 /min. (std.) 0.062 /min. (std.) 908

4.2 ± 4.3 909

RF input [mw] Output phase [deg] Room & Inside of rack temperature [deg] 1.6 1.5 1.4 1.3 1.2 3 2 1 RF output RF input 0 35 30 25 Coolant temp. Room temp. Inside of rack temp. 20!"%!"$$!"$!"#$!"# %$ #" #$!" RF output [kw] Coolant temperature [deg] [1] T. Shintake,, in these proceedings. [2] H. Hanaki et al.,, in Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan, Higashihiroshima, Japan, 2008 pp. 539-541. [3] T. Hara et al.,, in Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan, Wako, Japan, 2007 pp. 610-612. [4] H. Tanaka et al.,, in Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan, Wako, Japan, 2007 pp. 613-615. [5] H. Maesaka et al.,, in Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan, Higashihiroshima, Japan, 2008 pp. -. [6] T. Oshima et al.,, in Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan, Higashihiroshima, Japan, 2008 pp. 99-101. [7] T. Shintake et al.,, in Proceedings of the 2nd Annual Meeting of Particle Accelerator Society of Japan, Tosu, Japan, 2005 pp. 314-316. [8] T. Yamamoto et al.,, in these proceedings. 910