£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè10²ó – ¿¹à¼°¤Îɾ²Á¡§¥¢¥ë¥´¥ê¥º¥à¤Î²þÁ± –

Similar documents
£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè11²ó – ½ÉÂꣲ¤Î²òÀ⡤±é½¬£² –

I117 7 School of Information Science, Japan Advanced Institute of Science and Technology

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裶²ó ¨¡ À©¸æ¹½Â¤¡§·«¤êÊÖ¤· ¨¡

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v

重力方向に基づくコントローラの向き決定方法

Gmech08.dvi

P_SyugojutakuKenzai_H14.pdf


Taro13-第6章(まとめ).PDF

1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf("hello World!!\n"); return 0; 戻り値 1: main() 2.2 C main

December 28, 2018

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1:

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Gmech08.dvi

ex01.dvi

08-Note2-web

# 深く掘り下げる C++ 講座 < 第 2 回 > // 先に先週の内容の解説 r ( キャリッジリターン ) 行の先頭に戻る 語源はタイプライターからだそうです とりあえず 以下に rを使ったくるくる回る顔文字のソース 注 : 以下のソースはmacのターミナル上での動作のみ保証 例 ) #inc

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

曲面のパラメタ表示と接線ベクトル

[PDF] ザルトバインド総合カタログ

( ) ( )

KENZOU

( ) ( ) 30 ( ) 27 [1] p LIFO(last in first out, ) (push) (pup) 1

1 発病のとき


-5 -

別冊 各分野における虐待事例と分析


AutoTuned-RB

untitled


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

7-12.dvi

θ (t) ω cos θ(t) = ( : θ, θ. ( ) ( ) ( 5) l () θ (t) = ω sin θ(t). ω := g l.. () θ (t) θ (t)θ (t) + ω θ (t) sin θ(t) =. [ ] d dt θ (t) ω cos θ(t

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

高等学校学習指導要領

高等学校学習指導要領






double float

疎な転置推移確率行列

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

統計数理研究所殿


サポートブック



Made for Life Report 2008

Microsoft Outlook 2013

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

mugensho.dvi

A

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

(search: ) [1] ( ) 2 (linear search) (sequential search) 1

pdf

Java (7) Lesson = (1) 1 m 3 /s m 2 5 m 2 4 m 2 1 m 3 m 1 m 0.5 m 3 /ms 0.3 m 3 /ms 0.6 m 3 /ms 1 1 3

kyoto.gby

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

ランダムウォークの確率の漸化式と初期条件

スライド 1

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

CG38.PDF

表紙_02




野岩鉄道の旅

スライド 1

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

chap1.dvi

untitled

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

マルコフ連鎖の時間発展の数値計算

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

2 T ax 2 + 2bxy + cy 2 + dx + ey + f = 0 a + b + c > 0 a, b, c A xy ( ) ( ) ( ) ( ) u = u 0 + a cos θ, v = v 0 + b sin θ 0 θ 2π u = u 0 ± a

応力とひずみ.ppt

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


115px 500px

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

A common.h include #include <stdio.h> #include <time.h> #define MAXN int A[MAXN], n; double start,end; void inputdata(

Transcription:

(2018) 10 2018 12 06

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0 1 a k x k = a k {{ x x x

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0 1 a k x k = a k {{ x x x 2 x x k x k = x x k 1 x k 1

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0 1 a k x k = a k {{ x x x 2 x x k x k = x x k 1 x k 1 ( 3 x (x(xa ) ) n + a n 1 ) + a n 2 + a1 + a 0

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0 1 a k x k = a k {{ x x x 2 x x k x k = x x k 1 x k 1 ( 3 x (x(xa ) ) n + a n 1 ) + a n 2 + a1 + a 0 {{ n

p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = n a n x n k=0 1 a k x k = a k {{ x x x 2 x x k x k = x x k 1 x k 1 ( 3 x (x(xa ) ) n + a n 1 ) + a n 2 + a1 + a 0 {{ n

n 2 double _simple(double x, double *a, int n) { int i, k; double s, t; s = 0; for (k = n; k >= 0; k--) { t = 10; for (i = 1; i <= k; i++) { t *= x; s += a[k] * t; return s;

n 2 double _simple(double x, double *a, int n) { int i, k; double s, t; s = 0; for (k = n; k >= 0; k--) { t = 10; for (i = 1; i <= k; i++) { t *= x; s += a[k] * t; return s; k n k 2 = n(n + 1)/2 1 2n

Honer n double _honer(double x, double *a, int n) { int i, k; double s, t; s = a[n]; for (k = n - 1; k >= 0; k--) { s = s * x + a[k]; return s;

Honer n double _honer(double x, double *a, int n) { int i, k; double s, t; s = a[n]; for (k = n - 1; k >= 0; k--) { s = s * x + a[k]; 1 2n return s;

pow() double _power(double x, double *a, int n) { int i, k; double s, t; s = 0; for (k = n - 1; k >= 0; k--) { s += a[k]*pow(x, k); return s;

pow() double _power(double x, double *a, int n) { int i, k; double s, t; s = 0; for (k = n - 1; k >= 0; k--) { s += a[k]*pow(x, k); 1 2n 1 n return s;

gettimeofday #include <sys/timeh> int gettimeofday( struct timeval tv, struct timezone tz) struct timeval { time_t tv_sec; /* */ suseconds_t tv_usec; /* */ ; struct timeval ts, tf; gettimeofday(&ts, NULL); /* */ gettimeofday(&tf, NULL); /* */ tftv_usec - tstv_usec; /* */

gettimeofday #include <sys/timeh> int gettimeofday( struct timeval tv, struct timezone tz) struct timeval { time_t tv_sec; /* */ suseconds_t tv_usec; /* */ ; struct timeval ts, tf; gettimeofday(&ts, NULL); /* */ gettimeofday(&tf, NULL); /* */ tftv_usec - tstv_usec; /* */ POSIX1-2008

clock_gettime #include <timeh> int clock_gettime( clockid_t clk_id, struct timespec res) struct timespec { time_t tv_sec; /* */ long tv_nsec; /* */ ; clockid_t clk = 1; struct timespec ts, tf; clock_gettime(clk, &ts); /* */ clock_gettime(clk, &tf); /* */ tftv_nsec - tstv_nsec; /* */

1 2

1 2

1 2 3 CPU

1 2 3 CPU

1 2 3 CPU gcc O gcc - On ***c (n =0,1,2,3)

2 g v dv x dt = bv x, dv y dt = g bv y (1) b v 0 θ x(t) = v 0 cos θ ( 1 e bt) (2) b y(t) = 1 ( v 0 sin θ + g ) ( 1 e bt) g b b b t (3) 11 ( ) p14

2 1 y 4 t m y > 0 y < 0 t m1 h = 0001 2 t m (3) 0 [ t m1 h, t m1 ] t m2 3 t m2 (3) y(t m2 ) 0 4 x(t m )

2 4 rk4fixo rk4fixv6 main x(t), y(t) g = 98 m s 2, b = 10 m 1, v 0 = 98 m s 1 θ mod 60 +20 20 79

2 θ = 26 h 0001 2 10 10 13 $ /hw2018a-2 Th = 26 tm = 07780000000000 t = 07770948429848, y = +7238654e-13 t = 07770948429849, y = +3916867e-13 t = 07770948429850, y = +5950795e-14 t = 07770948429851, y = -2726708e-13 t = 07770948429852, y = -6039613e-13 xm = 47587109588997

2 θ 3 2 θ = 80 70 60 50 40 30 20 y 1 0 0 1 2 3 4 5 x

2 wasedajp matuda-namio@aoniwasedajp 1Y17B999 2 12 12 20:00 hw2018a-2c