セアラの暗号

Similar documents
本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

第86回日本感染症学会総会学術集会後抄録(I)

プログラム

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

nsg02-13/ky045059301600033210

研修コーナー

パーキンソン病治療ガイドライン2002

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

, = = 7 6 = 42, =


y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

四変数基本対称式の解放

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

CVMに基づくNi-Al合金の

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

Erased_PDF.pdf

日本内科学会雑誌第102巻第4号

TOP URL 1

陦ィ邏・2

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

プリント

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム


201711grade1ouyou.pdf

τ τ

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Part () () Γ Part ,

DVIOUT-HYOU

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

mahoro/2011autumn/crypto/

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


SO(2)


Dynkin Serre Weyl

arxiv: v1(astro-ph.co)

Block cipher

Note.tex 2008/09/19( )


( ) ( )

日本医科大学医学会雑誌第7巻第2号

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2


福岡大学人文論叢47-3

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1


TOP URL 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

TOP URL 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

untitled

newmain.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

DVIOUT-fujin

0406_total.pdf

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


nsg04-28/ky208684356100043077

2000年度『数学展望 I』講義録

meiji_resume_1.PDF

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

untitled

基礎数学I

untitled

(Onsager )

Z: Q: R: C:

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

四変数基本対称式の解放

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

: , 2.0, 3.0, 2.0, (%) ( 2.

,,..,. 1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

D 24 D D D

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

Transcription:

1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17 RSA Cayley-Purser RSA 3 1 In Code: A Mathematical Journey by Sarah Flannery and David Flannery 2 http://ec.europa.eu/research/press/1999/pr2509en ann.pdf 3

2 CP 2 [2] Cayley-Purser(CP RSA CP RSA RSA RSA RSA RSA RSA 3 The Cayley-Purser Algorithm 2 2 Purser Cayley-Purser Algorithm CP Cayley 19 Arthur Cayley (1821-1895 Purser Michael Purser [1] 4 3.1 GL(2, Z n n GL(2, Z n 5.2 5 Z n n Z Z n (mod n n GL(2, Z n Z n 2 2 GL(2, Z n 4 Michael Purser 5 3.1

3 3.1 GL(2, Z n α = ( a 11 a 12 a 21 a 22 Z n 2 2 α GL(2, Z n a 11 a 22 a 12 a 21 n. 2 2 ( ( ( a 11 a 12 a 22 a 12 = (a 11 a 22 a 12 a 21 a 21 a 22 a 21 a 11 α (a 11 a 22 a 12 a 21 Z n (mod n n 1 0 0 1 p q n = pq G = GL(2, Z n CP GL(2, Z n GL(2, Z n 6 3.2 p, q n = pq GL(2, Z n = p(p 1(p 2 1q(q 1(q 2 1 = nφ(n 2 (p + 1(q + 1 φ(n n φ(n = (p 1(q 1. M(2, Z n, M(2, Z p, M(2, Z q Z n, Z p, Z q 2 2 M(2, Z n M(2, Z p M(2, Z q GL(2, Z n GL(2, Z p GL(2, Z q GL(2, Z n = GL(2, Z p GL(2, Z q a, b, c, d Z p ab cd = 0 ab = cd Z p 6 A A A

4 CP (1 a = 0 b : c = 0 d : = p 2 (2 a = 0 b : c 0 d = 0 = p(p 1 (3 a 0 b : c : d : = (p 1p 2 3.1 GL(2, Z p M(2, Z p = p 4 GL(2, Z p = p 4 p 2 p(p 1 (p 1p 2 = p(p 3 p 3 p + 1 = p(p 1(p 2 1 GL(2, Z q = q(q 1(q 2 1 GL(2, Z n = nφ(n 2 (p + 1(q + 1 RSA φ(n n n n = pq 3.2 CP RSA n (mod n CP 2 2 n 2 2 RSA (mod n n (mod n n CP n n RSA B p q n = pq χα 1 αχ χ, α GL(2, Z n β = χ 1 α 1 χ γ = χ r ; r N n α β γ

5 A µ B A B s N δ = γ s ɛ = δ 1 αδ κ = δ 1 βδ A µ µ = κµκ µ ɛ B A µ ɛ λ = χ 1 ɛχ µ = λµ λ µ 3.3. λ = χ 1 ɛχ............................. (λ = χ 1 (δ 1 αδχ....................... (ɛ = δ 1 (χ 1 αχδ (δ χ δ χ = δ 1 (χ 1 α 1 χ 1 δ...................... ( = δ 1 β 1 δ................. (β = χ 1 α 1 χ = (δ 1 βδ 1...................... ( = κ 1.....(κ A

6 CP λµ λ = λ(κµκλ = (κ 1 κµ(κκ 1 = µ 4 CP CP 4.1 A B C B n α β γ A µ ɛ χ χ β = χ 1 α 1 χ (1 χ χ r γ = χ r (2 χ α α 1 (1 χ 4.2 (2 (2 γ (2 r χ r n r- r = 2 2 2 x 2 a (mod n (3 n = pq n = pq (3 n = pq 7 p q n n = pq γ χ (2 RSA 7

7 4.3 (1 (1 β = χ 1 α 1 χ χβ = α 1 χ (4 χ χ GL(2, Z n α C(α χ C(α α GL(2, Z n αx = xα GL(2, Z n x GL(2, Z n α C(α C(α GL(2, Z n αx = xα xα 1 = α 1 x = C(α 1 = C(α 4.1 (4 χ C(α. χ χ 1 (4 β = χ 1 α 1 χ β = χ 1 1 α 1 χ 1 χ 1 α 1 χ = χ 1 1 α 1 χ 1 χ 1 1 χ α 1 χχ 1 1 = χχ 1 1 α 1 C(α χχ 1 1 C(α 1 χ C(α 1 χ 1 1 C(α 1 = C(α 1 χ C(α χ 1

8 CP C(α α α GL(2, Z n α C(α C(α α α 4.2 p q p 1 q 1 p = 2p 1 + 1, q = 2q 1 + 1 GL(2, Z n α 4.1. GL(2, Z n A det(a GL(2, Z n Z n Φ Φ : GL(2, Z n Z n A Z n Φ(A. r A GL(2, Z n A r = I I Φ(A = u 1 = Φ(I = Φ(A r = Φ(A r = u r u Z n m m r A GL(2, Z n m GL(2, Z n A Φ(A A Z n Z p Z q Z p Z q p 1 q 1 Ψ : Z/Z n Z p Z q Z/Z n Z p Z q x (mod n (x mod p, x mod q (5 GL(2, Z n

9 Z n 4.2. Z n 1, 2, p 1, q 1, 2p 1, 2q 1, p 1 q 1, 2p 1 q 1. p = 2p 1 + 1 q = 2q 1 + 1 p 1 = 2p 1 q 1 = 2q 1 p 1 q 1 Z n Z p Z q (2, 2, p 1, q 1 2, 2, p 1, q 1 4.3. Z n 1 1 2 3 p 1 p 1 1 q 1 q 1 1 2p 1 3p 1 3 2q 1 3q 1 3 p 1 q 1 p 1 q 1 p 1 q 1 + 1 2p 1 q 1 3p 1 q 1 3p 1 3q 1 + 3. 2p 1 Z p (2, p 1 Z p Z q Zp Zq 1 1 1 1 2 1 2 1 p 1 p 1 1 q 1 q 1 1 2p 1 p 1 1 2q 1 q 1 1 (5 Ψ Z p Z q (a, b a Z p s b Z q t Ψ(c = (a, b Zn c s t [s, t] a p 1 b q 1 c p 1 q 1 p 1 a p 1 1 q 1 b q 1 1 Z n

10 CP p 1 q 1 c (p 1 1(q 1 1 = p 1 q 1 p 1 q 1 + 1 1 1 [1, 1] = 1 2 3 [1, 2] = [2, 1] = [2, 2] = 2 p 1 p 1 1 [p 1, 1] = p 1 q 1 q 1 1 [1, q 1 ] = q 1 2p 1 3p 1 3 [2p 1, 1] = [2p 1, 1] = [2p 1, 2] = 2p 1 2q 1 3q 1 3 [1, 2q 1 ] = [1, 2q 1 ] = [2, 2q 1 ] = 2q 1 p 1 q 1 p 1 q 1 p 1 q 1 + 1 [p 1, q 1 ] = p 1 q 1 2p 1 q 1 3p 1 q 1 3p 1 3q 1 + 3 [2p 1, q 1 ] = [2p 1, 2q 1 ] = [p 1, 2q 1 ] = 2p 1 q 1 4.2 p 1 q 1 1 2 p 1 q 1 1 2 4 Z n 4p 1q 1 4.2 [2]. p 1 q 1 p 1 q 1 4p 1 + 4q 1 4 4p 1 q 1 1 + 1 1 p 1 q 1 p 1 q 1 p q 10 100 2 10 100 (4 8 χ 8 6.2 RSA p 1 q 1

11 5 RSA CP [2] RSA CP 1. RSA CP CP RSA Mathematica PowerMod CP 20 2. RSA (n, e Bob n e CP CP Alice RSA e 3. Alice Bob Eve c RSA e 4. CP Alice Bob δ κ 1 = λ RSA Alice Bob CP Alice Bob 6 RSA vs. CP CP RSA Max Ehrmannn Desiderata 1769 RSA CP [2] Mathematica [2] 9 9

12 CP 7 [2] (a CP RSA (b CP RSA Running Time (Seconds Message = 4 * 1769 = 7076 characters b RSA CP 222 digits 84.641 3.916 21.6:1 242 digits 104.71 4.036 25.9:1 262 digits 118.841 4.276 27.8:1 282 digits 131.739 4.326 30.5:1 302 digits 145.689 4.487 32.5:1 8 CP 8.1 3.2 µ χ = νχ χ CP B A µ ɛ A µ ɛ µ. χ 1 ɛ χ = (χ 1 ν 1 ɛ ν χ = χ 1 ɛ χ = κ 1 κ µ 3.2 γ c δ = ci ɛ = α

13 κ = β α κ n γ 3.2 γ γ ci c 1 c 2 γ c 1 I (mod p γ c 2 I (mod q n. 0 γ ij < n γ = ( γ 11 γ 12 γ 21 γ 22 d = gcd(γ 11 γ 22, γ 12, γ 21, n 1 d n d = n γ 11 = γ 22, γ 12 = 0, γ 21 = 0 γ = ci 1 < d < n n p q γ c 1 I (mod p γ 11 γ 22 (mod p, γ 12 0 (mod p, γ 21 0 (mod p d > 1 γ c 1 I (mod q d > 1 8.2 γ (mod n (mod p (mod q α, β γ χ χ n. γ γ = χ r 2 Cayley-Hamilton γ = χ r = aχ + bi gcd(a, n = 1 a 1 Z n aχ = γ bi (6 χ = aχ

14 CP β = χ 1 α 1 χ = a 1 χ 1 α 1 aχ = (aχ 1 α 1 (aχ = χ 1 α 1 χ χ β = α 1 χ (6 (γ biβ = α 1 (γ bi γβ bβ = α 1 γ bα 1 b(α 1 β = α 1 γ γβ b α 1 β (α 1 β (1, 1 b(α 11 β 11 e (mod n α 11 α 1 (1, 1 b gcd(α 11 β 11, n = 1 1 < gcd(α 11 β 11, n n n (α 11 β 11 1 b 4 [2] Remark 1: α, γ, δ χ χ χ ɛ λ = κ 1 ɛ χ CP Remark 2: γ n n n χ Remark 3: 3 3 CP Remark 4: δ δ = γ s δ = aγ + bi

15 [1] / [2] Sarah Flannery, Cryptography: An Investigation of a New Algorithm vs. the RSA, 1999, http://cryptome.org/flannery-cp.pdf Remark 1 (a CP RSA RSA CP 11 CP CP CP Cayley-Purser RSA [1] In Code: A Mathematical Journey by Sarah Flannery and David Flannery [2]