Size: px
Start display at page:

Download ""

Transcription

1 nuida@mist.i.u-tokyo.ac.jp

2

3 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a c a a 1 a 1.1 ( ). p Z >0 p 1 p 1 p 1 2, 3, 5, 7, 11, 13, 17,... a a a a a Z 1.1. a, b, c b a c a b + c a. b b + c a c = (b + c) b a c a b + c a 1.2. n 2 n. n n n = 2 n n n n 1 n d

4 d < n d n p 1, p 2,..., p k 2 k 1 p 1,..., p k 2 n = p 1 p 2 p k + 1 n 3 p i p 1 p 2 p k p i 1 p i p i n p i 1.2 n p 1,..., p k p 1,..., p k a b c a b c a b c a b c 1.2 ( ). a b gcd(a, b) a = 0 b = 0 gcd(a, b) = 0 a 0 b 0 a b 1 a b 0 gcd(a, b) gcd(a, b) = 1 a b 1.3 ( ). a b lcm(a, b) a = 0 b = 0 lcm(a, b) = 0

5 a 0 b 0 a b ab a lcm(a, b) gcd(a, b) = gcd(b, a) lcm(a, b) = lcm(b, a) 1.3. a b a b r 0 r < b gcd(a, b) = gcd(r, b). a b r b d b d a d r r a b q a = qb + r d b qb d r d a = qb + r d a d r = a qb d 1.3 a, b a > b > 0 a b r gcd(a, b) = gcd(b, r) r = 0 gcd(b, r) = b gcd(a, b) = b gcd(a, b) r 0 gcd(a, b) gcd(b, r) b > r > 0 r a gcd(a, b) a b ca+db = gcd(a, b) c, d cb+dr = gcd(b, r) = gcd(a, b) c, d a = bq + r q Z gcd(a, b) = cb + dr = cb + d(a bq) = da + (c dq)b c a + d b = gcd(a, b) c = d d = c dq r = 0 gcd(a, b) = b 0 a + 1 b = gcd(a, b)

6 c, d 1.2. a, b ca+db = gcd(a, b) c, d a, b m a b m a m b a b (mod m) a m ba m gcd(a, m) b a m ba m 1 b. 1.2 a m ba + cm = gcd(a, m) b, c Z cm m gcd(a, m) = ba + cm m ba 1.2. p 2 1. p 2. a, b p a p b p ab. 1 2 p p a 1 p p a p p a 1 gcd(a, p) = ca + dp = 1 c, d Z b c b + d p = 1 c, d Z (ca + dp)(c b + d p) = 1 (ca + dp)(c b + d p) = cc ab + (cad + dc b + dd p) p

7 cc ab = (cad + dc b + dd p) p p 2 p 1.1 cc ab p ab p a p ab = p b b p p p = ab 2 p a p b p a a p a = p p b b = p ap = p a = 1 p p 1 p n 1. k 0 p 1,..., p k e 1,..., e k e1 e n = p 1 p k k k = 0 1 e1 e n = p 1 p k k n e1 e 2. n = p 1 p k f1 f k n = q 1 q l l n k = l (q 1, f 1 ),..., (q k, f k ) p i = q i e i = f i i = 1,..., k. 1 n n n = 1 n n 2 n n = n 1 n n n a, b n = ab a b

8 e1 e a = p 1 p k k b = p 1 e 1 p k e k n = ab p 1,..., p k, p 1,..., p k q 1,..., q l i = 1,..., l f i q i = p j q i {p 1,..., p k } f i = e j q i = p j q i {p 1,..., p k } f i = e j q i = p j = p j f i = e j + e j n = q 1 f1 q l f l n 2 n n n = 1 n 1 n 2 n = p 1 e1 p k e k n = q 1 f1 q l f l p k n f1 p k q 1 q f l l 1.2 q i p k q i q i p k 2 p k = q i n n = q 1 f1 q l f l i = l e k f l e k f l e k f l n = n/p k e k = n/q l e k n e1 e = p 1 p k 1 f1 f k 1 = q 1 q l 1 f l 1 p l e k k f l e k > 0 p k n p k {p 1,..., p k 1 } p 1,..., p k f l e k = 0 n = p 1 e1 p k 1 e k 1 = q 1 f1 q l 1 f l 1 n n < n 2 n k 1 = l 1

9 k = l (q 1, f 1 ),..., (q k 1, f k 1 ) p j = q j e j = f j j = 1,..., k 1 k = l p k = q k e k = f k 2 n

10 n a, b n a b a n b a n a mod n a n q Z a = qn + (a mod n) a mod n {0, 1,..., n 1} a n (a mod n) n 2.1. n a 1, a 2, b 1, b 2 a 1 n b 1 a 2 n b 2 a 1 + a 2 n b 1 + b 2, a 1 a 2 n b 1 b 2, a 1 a 2 n b 1 b 2. a 1 b 1 = cn c a 2 b 2 = dn d (a 1 + a 2 ) (b 1 + b 2 ) = (a 1 b 1 ) + (a 2 b 2 ) = cn + dn = (c + d)n a 1 + a 2 n b 1 + b 2 (a 1 a 2 ) (b 1 b 2 ) = (a 1 b 1 ) (a 2 b 2 ) = cn dn = (c d)n a 1 a 2 n b 1 b 2 a 1 a 2 b 1 b 2 = a 1 (a 2 b 2 ) + (a 1 b 1 )b 2 = a 1 dn + cnb 2 = (a 1 d + cb 2 )n a 1 a 2 n b 1 b n n n = 7 ( ) mod = ,

11 = = 8 7 1, = 3, 2 6 = , = ( ) mod 7 = n n = mod = (11101) 2 (1) 2 = 1 (11) 2 = 3 (111) 2 = 7 (1110) 2 = 14 (11101) 2 = mod , 7 3 = (7 1 ) = = , 7 7 = (7 3 ) = = , 7 14 = (7 7 ) = , 7 29 = (7 14 ) = = Z/nZ Z/nZ = {a mod n a {0, 1,..., n 1}} 2.1 Z/nZ (a mod n) + (b mod n) = (a + b) mod n, (a mod n) (b mod n) = (a b) mod n, (a mod n) (b mod n) = (a b) mod n Z/nZ Z/nZ Z/nZ a mod n a

12 ( ). G G G a, b G a b G 1. G a, b, c (a b) c = a (b c) G a, b a b = b a G G G G 2. G e G a a e = a e a = a e G G G 3. e G a G a b = e b a = e G b b a 2.2 ( ). R R + 1. R + 0 a a a + ( b) a b 2. R a b a b ab 3. + R a, b, c a (b + c) = (a b) + (a c) (b + c) a = (b a) + (c a) R R R R

13 R \ {0} 1 R R \ {0} R R \ {0} R R R R 0 a = 0 a 0 = 0 Z, Q, R, C 0 1 Z/nZ 0 = 0 mod n n 2 Z/nZ 1 = 1 mod n n = 1 Z/nZ 0 Z ±1 a Z Z a = 0 a 1 Q Z/nZ 1 ( 1 mod n) = n 1 Z/nZ n 2.2. n 2 a Z/nZ a gcd(a, n) = 1. gcd(a, n) = ab n 1 b b b mod n a b n a ab n 1 ab + cn = 1 c Z gcd(a, n) ab cn 1 gcd(a, n) = n p (Z/pZ) = (Z/pZ) \ {0} Z/pZ 0 p Z/pZ Z/pZ F p 2.3 ( ). K K = K \ {0} K

14 F p Q, R, C Z 2.3. R R R R R R. a, b R ab R R R R a, b R R a 1, b 1 (ab) (b 1 a 1 ) = a(bb 1 )a 1 = a 1 a 1 = aa 1 = 1 b 1 a 1 ab ab R R 1 = R 1 R R a R aa 1 = a 1 a = 1 a 1 a a 1 a 1 R a 1 R a a R R 2.4 ( ). G 1, G 2 φ: G 1 G 2 g 1, g 2 G 1 φ(g 1 g 2 ) = φ(g 1 ) φ(g 2 ) φ G 1 G ( ). R 1, R 2 φ: R 1 R 2 r 1, r 2 R 1 φ(r 1 + r 2 ) = φ(r 1 ) + φ(r 2 ) r 1, r 2 R 1 φ(r 1 r 2 ) = φ(r 1 ) φ(r 2 ) 1 R1 1 R2 R 1 R 2 φ(1 R1 ) = 1 R2

15 φ R 1 R 2 m 1,..., m k Z/m i Z a i i = 1,..., k (a 1,..., a k ) Z/m 1 Z Z/m k Z Z/m 1 Z Z/m k Z Z/m 1 Z,..., Z/m k Z Z/m 1 Z Z/m k Z (a 1,..., a k ) + (b 1,..., b k ) = (a 1 + b 1,..., a k + b k ), (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ), (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ) Z/m 1 Z Z/m k Z (0, 0,..., 0) (1, 1,..., 1) 2.1 ( ). m 1,..., m k k 1 2 m = m 1 m k Z/mZ a Z/m 1 Z Z/m k Z (a mod m 1,..., a mod m k ) f 1. f Z/mZ Z/m 1 Z Z/m k Z 2. a Z/mZ f(a) = (a 1,..., a k ) a (Z/mZ) a i (Z/m i Z) i = 1,..., k f (Z/mZ) (Z/m i Z). f well-defined a m a f(a) = f(a ) a a = cm c i a a = cm 1 m i 1 m i+1 m k m i a mi a a mod m i = a mod m i f(a + b) = f(a) + f(b) f(ab) = f(a)f(b) Z/m 1 Z Z/m k Z f(1) = (1, 1,..., 1)

16 f Z/m 1 Z Z/m k Z m 1 m k = m Z/mZ f f 1 f m 1,..., m k i m i m/m i 2.2 m i m/m i c i i a i Z/m i Z a Z/mZ a = (m/m 1 ) c 1 a 1 + (m/m 2 ) c 2 a (m/m k ) c k a k i j i m/m j m i (m/m j ) c j a j mi 0 a mi (m/m i ) c i a i c i Z/m i Z m/m i a mi a i a mod m i = a i f(a) = (a 1,..., a k ) f 1 2 a (Z/mZ) 2.2 a m i a m i 2.2 a m i a i = a mod m i (Z/m i Z) i a i (Z/m i Z) Z/m i Z a i b i 1 f f(b) = (b 1,..., b k ) b Z/mZ f(ab) = f(a)f(b) = (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ) = (1,..., 1) f(1) = (1,..., 1) f(ab) = f(1) 1 f ab = 1 a (Z/mZ) n totient φ(n) φ(n) = (Z/nZ)

17 e1 e 2.2. n = p 1 p k k n e φ(n) = (p 1 1)p 1 1 e 1 (p k 1)p k 1 k. 2.1 φ(n) = (Z/nZ) e = (Z/p 1 1 Z) e (Z/p k k Z) e = φ(p 1 e 1 ) φ(p k k ) n p e 1 p e n n = p e 2.2 φ(p e ) p e a {0, 1,..., p e 1} a a p e a p p e a 1 1/p p e (1 1/p) = p e p e 1 = (p 1)p e 1 φ(p e ) = (p 1)p e 1 n = p e φ 2.3 ( ). G H H G G H G. G a ah ah = {ah G h H} ah bh ah = bh ah bh g g = ah 1 g = bh 2 h 1, h 2 H g = ah 1 = bh 2 a = bh 2 h 1 1 b = ah 1 h 1 2 ah ah h H ah = bh 2 h 1 1 h H G h 2 h 1 1 h H ah bh bh bh h H bh = ah 1 h 1 2 h H G h 1 h 1 2 h H bh ah ah = bh a G ah G G

18 ah G ah ah H G G H ( ). n 2 a n a φ(n) n 1. a a mod n a Z/nZ 2.2 a (Z/nZ) a k k Z (Z/nZ) a a (Z/nZ) a (Z/nZ) a k = a l k 0 l > k (k, l) (Z/nZ) l k = 0 k > 0 (k 1, l 1) a l = a 0 = 1 m a m = a m mod l a = {1 = a 0, a 1,..., a l 1 } l l a = l 2.3 φ(n) = (Z/nZ) a = l a l = 1 a φ(n) = 1 Z/nZ 2.1 ( ). p p a a p 1 p φ(p) = p K G K G G a G a k k Z a G. a G ord(a) = min{k Z >0 a k = 1} a G 2.4 a G a a = ord(a) ord(a) = G a G ord(a) G a

19 ord(a) = G ord(a) < G x ord(a) 1 K ord(a) b ord(a) = 1 K b ord(a) G b ord(a) 1 b G b ord(a) 1 b ord(b) = 1 ord(b) ord(a) ord(a) ord(b) p ord(a) p e ord(b) p f a = a pe b = b ord(b)/pf ord(a ) = ord(a)/p e ord(b ) = p f k = ord(a b ) k 1 (a b ) k = (a ) k (b ) k = 1 (a ) k = (b ) k a b 2.3 a ord(a ) = ord(a)/p e b ord(b ) = p f ord(a)/p e p f a b 1 (a ) k = (b ) k = 1 (b ) k = 1 k ord(a ) = ord(a)/p e ord(b ) = p f ord(a ) ord(b ) k ord(a )ord(b ) = ord(a) p f e ord(a b ) = k ord(a) p f e > ord(a) f > e a, b G a b G ord(a) a G 2.2. K K K K 2.6 ( ). n n a a n b 2 n a b Z n a a 2.7 ( ). p a

20 ( ) a { 1, 0, 1} p ( ) a = p 0 gcd(a, p) 1 1 gcd(a, p) = 1 a p 1 gcd(a, p) = 1 a p e1 e n > 1 n = p 1 p k ( k a n) ( a 0 gcd(a, n) 1 ( ) = e1 ( ) ek a a n) gcd(a, n) = 1 p 1 p k ( ) a 2.1. p a p p a (p 1)/2 p. b F p ord(b) = p 1 F p c c = b k k Z k k c c c = b k ( ) k a a = 1 p a = b 2k k Z p a (p 1)/2 = b (p 1)k = (b p 1 ) k = ( 1 k ) = 1 a 2.1 a = 1 p p a = b 2k+1 k Z a (p 1)/2 = b (p 1)k+(p 1)/2 = (b p 1 ) k b (p 1)/2 = b (p 1)/2 b b (p 1)/2 1 (b (p 1)/2 ) 2 = b p 1 = 1 b (p 1)/2 = 1 a (p 1)/2 = b (p 1)/2 = 1 ( ) ab ( a ) ( ) b 2.5. a, b n > 1 = n n n

21 ab n a b n 0 ab n a b n n = p 1 e1 p k e k n ( ) ( ) e1 ( ) ek ab ab ab = n p 1 p k ( ) ( ) ( ) ab a b i = ab n a b p i p i = 2 p i ( a ) b ( ) ( ) 2 ab a b = 1 = p i p i 2.1 ( ) ( ) ( ) ab pi (ab) (pi 1)/2 = a (pi 1)/2 b (pi 1)/2 pi api bpi p i p i p i p i p i ( ) ( ) ( ) ( ) ab ab pi ±1 = ( ) ( ) p i api bpi p i a b p i p i 2.5 ( ). ( a b 1. a b 1 ) ( ) b a = ( 1) a 1 b a 1 ( ) { 1 1 a = ( 1) a = a 1 a 4 3

22 a 1 ( ) { 2 = ( 1) a2 1 1 a 8 1, 7 8 = a 1 a 8 3, ( ) ( ) ( ) ( ) = = ( 1) (1272 1)/8 ( 1) ( ) ( ) ( ) 13 = 1 ( 1) = ( 1) ( 1) = ( 1) ( ) ( ) ( ) 2 3 = ( 1) = ( 1) ( 1) (132 1)/8 ( 1) ( ) 38 = = ( 1) ( 1) 1 ( ) 1 = 1 1 = 1 3

23 primality test primality certificate primality proof n > 1 2 n 1 n n n n n n 2 n 1 n n n 2

24 ( ). n > 1 1 n n k 3 k k 3. n > 1 n 1 n n n n n 1 n n 2.1 n > 1 n n a a n 1 n 1 a n 1 n 1 a a n

25 ( ). n > 1 1. a 1 n 1 gcd(a, n) gcd(a, n) 1 n 2. a n 1 n 1 n n 2 a n 1 n log 2 n n a n n n n a n n 1 n > 1 n a a n 1 n n 1 R. D. Carmichael: Note on a new number theory function. Bulletin of the American Mathematical Society, vol.16, no.5, pp (1910). doi: /s

26 ( ). n > 1 n 1. n 1 2 n 1 = 2 s d s 1 d 2. a 1 n 1 gcd(a, n) 1 n 3. a d n 1 i = 0, 1,..., s 1 a 2id n 1 n n 3.1. n. n 1 a n 1 gcd(a, n) = 1 a 2sd = (a 2s 1d ) 2 n 1 F n F n a 2s 1d n ±1 3 a 2s 1d n 1 n a 2s 1d n 1 s 1 = 0 n s 1 > 0 a 2s 2d n ±1 i a 2id n 1 a d n 1 n n n n a n 1 n n n n 3/4 n

27 n 2 1/2 n e1 e. n n = p 1 p k k k 2 f : (Z/nZ) e (Z/p 1 1 Z) e (Z/p k k Z) n 1 = 2 s d d ( 1) d n 1 i = 0 b 2id n 1 b (Z/nZ) b 2id n 1 b (Z/nZ) s 1 i n a a d n 1 j = 0, 1,..., i a 2jd n 1 a a 2id n 1 a 2id n 1 A 1 = {b (Z/nZ) b 2id n 1} A 1 = {b (Z/nZ) b 2id n 1} A 1 A 1 1/2 A 1 A 1 b f(b) = (b 1,..., b k ) b 2id n 1 f(b 2id ) = f( 1) = ( 1,..., 1) (b 1,..., b k ) 2id 2 = (b id 2 1,..., b id k ) = ( 1,..., 1) f(c) = (b 1, 1,..., 1) c (Z/nZ) a A 1 f((ac) 2id ) = f(a 2id )f(c 2id ) = f(1) (b 1, 1,..., 1) 2id = ( 1, 1,..., 1) ac A 1 A 1 k = 2 a A 1 f((ac) 2id ) = f(a 2id )f(c 2id ) = f( 1) (b 1, 1,..., 1) 2id = (1, 1,..., 1) ac A 1 A 1 A 1 A 1 a A 1 A 1 ac A 1 A 1 (Z/nZ) /2 (n 1)/2 n a 1/2

28 a a generalized Riemann hypothesis GRH n a n 2 GRH 1976 Miller Rabin GRH 3 Pratt n > 2 a 1. a n 1 n 1 2. p n 1 a (n 1)/p n 1 n. n 1 a n 1 n 1 a (Z/nZ) a φ(n) n 1 n φ(n) < n 1 n a ord(a) n 1 ord(a) < n 1 n 1 p ord(a) (n 1)/p a (n 1)/p n n 2 G. L. Miller: Riemann s Hypothesis and Tests for Primality. Journal of Computer and System Sciences, vol.13, no.3, pp (1976). doi: / M. O. Rabin: Probabilistic algorithm for testing primality. Journal of Number Theory, vol.12, no.1, pp (1980). doi: / x(80) V. Pratt: Every prime has a succinct certificate. SIAM Journal on Computing, vol.4, pp (1975)

29 e1 e n 1 n 1 = p 1 p k k p 1,..., p k a n 1 n 1 i a (n 1)/pi n 1 a n 1 n

30 Agrawal, Kayal, Saxena AKS AKS AKS n n AKS AKS 4 (X + a) n X r 0 1,n X n + a Z/nZ X r (AKS ). n > 1 1. n a k a > 0 k 2 n 2. r = 2, 3,..., n 1 (a) gcd(r, n) > 1 n (b) i = 1, 2,..., (log 2 n) 2 n i r 1 r r 0 3. r 0 n 5 M. Agrawal, N. Kayal, N. Saxena: PRIMES Is in P. Annals of Mathematics, vol.160, pp (2004)

31 a = 1, 2,..., φ(r 0 ) log 2 n (X + a) n X r 0 1,n X n + a n 5. n 1 n = a k n O((log n) 3 poly(log log n)) 2(a) gcd(r, n) > 1 r < n 1 < gcd(r, n) < n n 3 r 0 r = 2, 3,..., n 1 gcd(r, n) = 1 n 4 ( ) ( n n (X + a) n = X n + ax n ) a 2 X n ( ) n a n 1 X + a n n 1 n ( ) ( n 1,..., n n 1) n a n n a Z/nZ (X +a) n = X n + a (X + a) n X r 0 1,n X n + a a (X + a) n X r 0 1,n X n + a n n n X r 0 1

32 r 0 r 0 φ(r 0 ) r 0 r 0 r 0 φ(r 0 ) r 0 2 r 0 4 n n 4.1. n > (log 2 n) r (log 2 n) 5 r 2(a) n 2(b) r 0. B = (log 2 n) 5 n 2 B d r 0 r d 2(a) n n 2 B r 2(a) r 0 2 r B r n i 1 i (log 2 n) 2 (log 2 n) 2 P = (n i 1) P 2 B i=1 P < (log 2 n) 2 i=1 n (log 2 n)2 n (log 2 n)4 = 2 (log 2 n)5 2 B lcm(2,..., B) P < 2 B [Nai] 6 m 7 lcm(2,..., m) 2 B n > (log 2 n) M. Nair: On Chebyshev-Type Inequalities for Primes. Amer. Math. Monthly, vol.89, pp (1982)

33 n > 2 B (log 2 3) 5 (log 2 2 2) 5 = (3/2) 5 = 243/32 > 7 2 n r 4.1 r (log 2 n) 5 4 n r 0 n (Z/r 0 Z) ord(n) (log 2 n) 2 n p p (Z/r 0 Z) ord(p) > 1 p 2(a) p > r (introspective). f(x) m > 0 m f(x) introspective f(x) m X r 0 1,p f(x m ) m m f(x) introspective mm f(x) introspective 2. m f(x) g(x) introspective m f(x)g(x) introspective. 1 m introspective f(x) mm X r 0 1,p f(x m ) m m introspective f(x) m X r 0 1,p f(x m ) X X m f(x m ) m X mr 0 1,p f(x mm ) X r 0 1 X mr 0 1 f(x m ) m X r 0 1,p f(x mm ) f(x) mm X r 0 1,p f(x mm )

34 mm f(x) introspective 2 m f(x) g(x) introspective (f(x)g(x)) m = f(x) m g(x) m X r 0 1,p f(x m )g(x m ) m f(x)g(x) introspective l = φ(r 0 ) log 2 n a l n, p, n/p X + a introspective. 4 (X + a) n X r 0 1,n X n + a p n (X + a) n X r 0 1,p X n + a n X + a introspective p (X + a) p p X p + a (X + a) p X r 0 1,p X p + a p X + a introspective n/p c i = ( ) n/p i a n/p i (X + a) n/p = X n/p + n/p 1 i=0 c i X i (X + a) p X r 0 1,p X p + a (X + a) n = ((X + a) p ) n/p X r 0 1,p (X p + a) n/p = X n + n/p 1 (X + a) n X r 0 1,p X n + a X n + n/p 1 i=0 n/p 1 i=0 c i X pi X r 0 1,p X n + a c i X pi X r 0 1,p a 0 j r i<n/p pi mod r 0 =j c i p { a j = 0 0 j > 0 i=0 c i X pi

35 p (Z/r 0 Z) r 0 p p pi mod r 0 = j i mod r 0 = p j mod r 0 j = 0 p j mod r 0 = 0 0 j r 0 1 c i p 0 i<n/p i mod r 0 =j (X + a) n/p = X n/p + { a j = 0 0 j > 0 n/p 1 i=0 c i X i X r 0 1,p X n/p + a n/p X + a introspective I = {(n/p) i p j i, j Z 0 } P = { l a=0 (X + a)ea e 0,..., e l Z 0 } G = {m mod r 0 m I} n p r 0 G (Z/r 0 Z) G g G r 0 g φ(r 0) = 1 g G G (Z/r 0 Z) n = (n/p) p I ord(n) > (log 2 n) 2 G > (log 2 n) 2 d 1 Φ d (X) Φ 1 (X) = X 1, Φ d (X) = X d 1 d d, d d Φ d (X) Φ d (X) Φ d (X) F p 4.2. F p Φ r0 (X) ord(p) h(x) h(x) F = F p [X]/(h(X)) F F p m 1, m 2 m 1 r0 m 2 F X m1 X m 2

36 F p ord(p) K 2.2 K x K = p ord(p) 1 ord(p) p ord(p) r0 1 r 0 K y = x K /r 0 y r 0 1 y 1 r 0 y r 0 = 1 y X r 0 1 d r 0 1 d < r 0 Φ d (X) X d 1 y 1 r 0 y d 1 y Φ d (X) y Φ r0 (X) y F p h(x) h(x) y Φ r0 (X) h(x) Φ r0 (X) y F p ord(p) h(x) ord(p) h(x) ord(p) d y F p d p d 1 y r 0 r 0 p d 1 p d r0 1 d < ord(p) h(x) ord(p) K = F p (y) F = F p [X]/(h(X)) X y F K F p y X F 1 r 0 m 1, m 2 m 1 r0 m 2 F X m1 X m 2 h(x) F 4.2 P F F G ord(p) > 1 p X, X + 1,..., X + l F 0 G F F G 4.3. G ( G +l G 1). f(x), g(x) P G f(x) p g(x) F f(x) g(x) F f(x) = g(x) m I F f(x) m = g(x) m m p, n/p f(x) g(x) X, X + 1,..., X + l m

37 f(x) g(x) introspective f(x) m X r 0 1,p f(x m ) g(x) m X r 0 1,p g(x m ) 4.2 h(x) F p Φ r0 (X) X r 0 1 f(x) m h(x),p f(x m ) g(x) m h(x),p g(x m ) F f(x) m = f(x m ) g(x) m = g(x m ) F f(x m ) = g(x m ) Q(Y ) = f(y ) g(y ) mod p m I X m F Q(Y ) 4.2 m mod r 0 X m F G m X m F Q(Y ) Q(Y ) G f(y ) g(y ) G f(y ) p g(y ) Q(Y ) G F f(x) g(x) l = φ(r 0 ) log 2 n < r 0 log 2 n r 0 > ord(n) > (log 2 n) 2 r 0 > log 2 n l < r 0 r 0 < p l < p X, X +1,..., X +l F p 1, X, X +1,..., X +l G 1 ( ) ( ( G 1)+(l+2 1) l+2 1 = G +l ) ( l+1 = G +l ) G 1 F p G G ( G +l G 1) 4.4. n p G n G. n p i, j G (n/p) i p j I ( G + 1) 2 > ( G ) 2 = G G r 0 I m 1 > m 2 m 1 r0 m 2 X m 1 X r 0 1 X m 2 f(x) P m 1, m 2 I f(x) introspective f(x) m 1 X r 0 1,p f(x m 1 ) X r 0 1,p f(x m 2 ) X r 0 1,p f(x) m 2 h(x) X r 0 f(x) m 1 1 F = f(x) m 2 f(x) G F Y m 1 Y m 2 Y m 1 Y m 2 G

38 m 1 (n/p) G p G = n G G n G n p n G G ( ) G + l G 1 G > (log 2 n) 2 G > G log 2 n G 1 G log 2 n G (Z/r 0 Z) = φ(r 0 ) l = φ(r 0 ) log 2 n G log 2 n G > (log 2 n) 2 G log 2 n > (log 2 n) 2 1 ( ) G + l G 1 ( ) l G log2 n G log 2 n ( ) 2 G log2 n + 1 G log 2 n = 2 G log 2 n + 1 G log 2 n G log 2 n > = 2 G log 2 n 1 4 = 2 G log 2 n +1 > 2 G log2 n = n G n G G ( ) G + l > n G G 1 ( G log 2 n + 2) n p 1 2 n = p n 4 5 n

39 ( ). Gen(1 λ ) λ pk sk λ 1 λ 1 λ pk M C sk pk Enc(m, pk) m M pk c C c [[m]] Dec(c, sk) c C sk m M (pk, sk) Gen(1 λ ) m M Dec(Enc(m, pk), sk) = m RSA 7 7 R. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, vol.21, no.2, pp (1978)

40 λ λ p q N = pq φ(n) e φ(n) d (N, e) d M = (Z/NZ) C = M m (Z/NZ) c = m e (Z/NZ) c (Z/NZ) m = c d (Z/NZ) RSA d ed φ(n) 1 m (Z/NZ) m ed 1 N 1 m ed N m m c = m e c d N m m m RSA c = [[m]] pk m RSA RSA N N p q φ(n) = (p 1)(q 1) e φ(n) φ(n) e d RSA N

41 RSA RSA RSA RSA c m c m c RSA RSA RSA Goldwasser Micali 8 λ p q ( ) x N = pq N x = ( ) p x = 1 (N, x) (p, q) q M = F 2 C = (Z/NZ) m F 2 m 0 1 (Z/NZ) y c = y 2 x m (Z/NZ) ( ) c c (Z/NZ) m = 1 p 8 S. Goldwasser, S. Micali. Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information. In: Proceedings of STOC 1982, pp (1982)

42 ( ) c m = 0 = 1 m = 1 p Goldwasser Micali x y 2.5 ( ) c = p ( y p ) 2 ( ) { m x 1 m = 0 = ( 1) m = p 1 m = 1 RSA semantic ( security a ) = 1 a N N N Goldwasser Micali m, m c, c (Z/NZ) cc m + m c = y 2 x m c = y 2 x m cc = (yy ) 2 x m+m m = m = 1 (yy x) 2 x 0 Goldwasser Micali Paillier

43 λ p q N = pq p 1 q 1 µ N µ M = Z/NZ C = (Z/N 2 Z) m Z/NZ m 0 N 1 N 1 N 1 r c = (1 + N) m r N (Z/N 2 Z) c (Z/N 2 Z) c µ (Z/N 2 Z) c c µ 0 N 2 1 c µ 1 N c µ 1 N 0 N 1 Z/NZ Z/NZ µ Paillier (Z/N 2 Z) (Z/p 2 Z) (Z/q 2 Z) φ(p 2 ) = p(p 1) (Z/p 2 Z) p(p 1) φ(q 2 ) = q(q 1) (Z/q 2 Z) q(q 1) µ p 1 q 1 (Z/N 2 Z) pqµ = Nµ c = (1 + N) m r N r Nµ N 2 1 c µ N 2 (1 + N) mµ (1 + N) mµ (mµ)(mµ 1) = 1 + (mµ)n + N N mµ N (mµ)n 2 c µ N (mµ)n c µ 1 N c µ 1 N mµ Z/NZ µ m Z/NZ 9 P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Proceedings of EUROCRYPT 1999, pp (1999)

44 Paillier c = (1 + N) m r N c = (1 + N) m r N cc = (1 + N) m+m (rr ) N m + m Paillier N

45 Pollard p 1 10 N N Pollard p N 1 a gcd(a, N) gcd(a, N) > 1 gcd(a, N) N 1 N gcd(a, N) 2. M gcd(a M 1, N) 1 < gcd(a M 1, N) < N gcd(a M 1, N) N gcd(a M 1, N) a M Pollard p 1 N N 6.1. p N M p 1 p gcd(a M 1, N). a p 1 p 1 M p 1 a M p 1 a M 1 p N p p gcd(a M 1, N) N p p 1 M 6.1 gcd(a M 1, N) > 1 N q q 1 M 10 J. M. Pollard. Theorems on Factorization and Primality Testing. Proc. Cambridge Phil. Soc., vol.76, pp (1974)

46 M a gcd(a M 1, N) < N N N p p 1 M M N M N p 1 M M M M M M B M B M = B! M p 1 M p 1 smooth Pollard p 1 p 1 smooth N p N p p 1 smooth 6.1. M = 10! = N = a = 2 Pollard p 1 N a M = 2 M M = ( ) 2

47 M mod N a M N a M 1 N gcd(a M 1, N) ( , ) (678565, ) (653344, 25221) (25221, 22819) (22819, 2402) (2402, 1201) (1201, 0) gcd(a M 1, N) = 1201 N = N = Pollard p 1 p = 1201 p 1 = 1200 M = 10! N = M a

48 M mod N a M N a M 1 N gcd(a M 1, N) ( , ) ( , ) (114559, 96692) (96692, 17867) (17867, 7357) (7357, 3153) (3153, 1051) (1051, 0) gcd(a M 1, N) = 1051 N = N = Pollard p 1 p = 1051 p 1 = 1050 M = 10! M a N Pollard p 1

49 Pollard p 1 p 1 smooth p N Pollard p 1 11 K K 2 3 K ( ). A, B K 16(4A B 2 ) 0 E : y 2 = x 3 + Ax + B K 7.1. K = F 11 A = 3 B = 2 K 16(4A B 2 ) = E : y 2 = x 3 + 3x + 2 K E 7.2 ( ). E : y 2 = x 3 + Ax + B K E K (a, b) O E K K- E K E(K) E K Mordell Weil E(K) = {(a, b) K 2 b 2 = a 3 + Aa + B} {O} 11 H. W. Lenstra Jr. Factoring Integers with Elliptic Curves. Annals of Mathematics, vol.126, no.3, pp (1987)

50 E a K = F 11 E K 1 2 b 2 b K 3 E(K) 12 (a, b) O 13 1: 7.1 (a, b) a a 3 + 3a b 4, 7 4, 7 1, 10 4, 7 5, 6 3, 8 E(K) E(K) 7.3 ( ). E K P Q E K- P + Q E(K) P = O P + Q = Q Q = O P + Q = P P, Q O P = (a, b) Q = (a, b) P + Q = O P, Q O P = (a 1, b 1 ) Q = (a 2, b 2 ) a 1 a 2 λ = b 2 b 1 a 2 a 1 P + Q = (a 3, b 3 ) a 3 = λ 2 a 1 a 2, b 3 = λ(a 3 a 1 ) b 1 P, Q O P = Q = (a, b) b 0 µ = 3a2 + A 2b P + Q = (a, b ) a = µ 2 2a, b = µ(a a) b

51 P, Q P Q P Q P = Q P E E P Q x P + Q y E x P + Q E P + Q = Q + P O + P = O P + O = O O E E(K) + (P + Q) + R = P + (Q + R) E(K) O E(K) E : y 2 = x 3 + 3x + 2 K = F 11 K- 7.2 P = (2, 4) Q = (3, 4) R = (4, 1) (P + Q) + R K K = 0 P + Q = (6, 7) = 3 (P + Q) + R = (10, 3) P + (Q + R) K = 8 Q + R = (2, 4) = P K = 6 P + (Q + R) = (10, 3) 2 4 (P + Q) + R = P + (Q + R)

52 N p q N = pq p > 3 q > 3 N E : y 2 = x 3 + Ax + B P = (a, b) gcd( 16(4A B 2 ), N) = 1 b 2 N a 3 + Aa + B (a, b) E E p q F p F q E p E q P p q P p P q P p E p (F p ) P q E q (F q ) Z/NZ P Z/NZ E M P M Z/NZ 0 c c N c N gcd(c, N) N N M P p q p 2 Q = (a 1, b 1 ) R = (a 2, b 2 ) Q p + R p = O a 1 a 2 p Q + R a 2 a 1 N N E P M M P p E p (F p ) E p (F p ) M (M P ) p = O p E E p (F p ) Pollard p 1 M E

53 E p (F p ) smooth M N N N 7.4. N = 77 E : y 2 = x 3 + 3x + 2 P = (2, 4) P E Z/NZ N M = 13 N E 11 (F 11 ) 13 M = (1101) 2 Z/77Z P P + P = 2P = (32, 36), 2P + P = 3P = (26, 32), 3P + 3P = 6P = (40, 17), 6P + 6P = 12P = (68, 18) 12P + P = 13P λ λ = = = 7 33 gcd(33, N) = 11 N = 77 11

54 Pollard 1988 Pollard F 9 = N > 0 x, y x 2 N y 2 x N ±y x 2 y 2 = (x y)(x + y) N x y x + y N gcd(x ± y, N) N f(x) Q α f(α) = 0 m f(m) N 0 m 12 A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, J. M. Pollard. The Number Field Sieve. In: Proceedings of STOC 1990, pp (1990) /2149

55 C C Q α Q(α) Q(α) 8.1 ( ). K F (x) G(x) K F (x) G(x) gcd(f (x), G(x)) F = 0 G = 0 gcd(f, G) = 0 F 0 G 0 F G K 1 gcd(f, G) 8.1. K F (x) G(x) K A(x)F (x) + B(x)G(x) = gcd(f, G) K A(x) B(x). F = 0 G = 0 F 0 G 0 F deg F G deg G F = GQ + R R 0 deg R < deg G Q R R 0 G G R R 0 F G deg(f, G) G c 1 deg(f, G) = 0 F + c G F G A B 8.1. K F (x) 0 K K G(x) F (x) H(x)G(x) 1 F (x) K H(x) H(x) F (x) G(x). F (x) gcd(f (x), G(x)) 1 F (x) G(x) F (x)

56 gcd(f (x), G(x)) = K H(x) A(x) AF + HG = 1 HG 1 = AF F 8.2. α f(x) f(x) d Q(α) = {a d 1 α d a 1 α + a 0 a 0, a 1,..., a d 1 Q}. K Q α C K K K 0 d 1 g(x) g(α) K K K g(x)h(x) f(x) r(x) f(α) = 0 g(α)h(α) = r(α) K K K 0 g(α) g(α) 0 g(x) f(x) 8.1 f(x) g(x) h(x) h(x)g(x) 1 f(x) h(α)g(α) 1 = 0 h(α)g(α) = 1 h(α) K g(α) K Q(α) = K 8.2 C Z α Z[α] Z[α] = {a d 1 α d a 1 α + a 0 a 0, a 1,..., a d 1 Z} d f(x) φ: Z[α] Z/NZ φ(a d 1 α d a 1 α + a 0 ) = a d 1 m d a 1 m + a 0 mod N f(m) N ( ). R

57 R 0 r 1, r 2 r 1 r 2 0 R 2. a, b R ac = b c R b a a b 3. R p R \ R R a, b p ab p a p b p R 4. R R 0 r c R 0 p 1,..., p k R r = cp 1 p k R r = cp 1 p k r 1. Q(α) Z[α] 2. Z[α] Z[α] x Z/NZ φ(x) x φ Z/NZ x Z[α] φ Z/NZ φ(x) x, y 8.1. N = 2117 f(x) f(x) = x m = 46 f(m) = N f(m) N 0 α = 1 C f(α) = 0 α Z[α] = Z[ 1]

58 a + bα a, b Z Z[α] φ(a + bα) = a + bm mod N β 1 = 1 + α, β 2 = 1 + 2α, β 3 = 2 + 3α, β 4 = 2 + α, β 5 = 3 + α, β 6 = 3 + 4α, β 7 = 5 + α, β 8 = 7 + α, β 9 = α Z[α] π 1 = 1 + α, π 2 = 1 + 2α, π 3 = 2 + α, π 4 = 2 + 3α α 2 = 1 β 1 = α π 1 β 2 = α π 3 β 3 = π 4 β 4 = α π 2 β 5 = α 3 π 1 π 2 2 β 6 = π 3 β 7 = α 3 π 1 π 4 2 β 8 = π 1 π 2 3 β 9 = α π 3 α 4 = 1 β 1 β 9 = α 10 π 4 1 π 4 2 π 6 3 π 2 4 = (απ 2 1 π 2 2 π 3 3 π 4 ) 2 Z/NZ φ(β 1 β 9 ) = ( φ(α)φ(π 1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) ) 2

59 φ(β 1 ) = 45 = φ(β 2 ) = 91 = 7 13 φ(β 3 ) = 140 = φ(β 4 ) = 44 = φ(β 5 ) = 49 = 7 2 φ(β 6 ) = 187 = φ(β 7 ) = 51 = 3 17 φ(β 8 ) = 39 = 3 13 φ(β 9 ) = 81 = 3 4 φ(β 1 β 9 ) = φ(β 1 ) φ(β 9 ) = = ( ) 2 ( ( ) 2 N φ(α)φ(π1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) ) 2 x = , y = φ(α)φ(π 1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) x = , y = = x 2 N y 2 x N ±y gcd(x + y, N) = gcd( , 2117) = 29 N 29 N = 29 73

60 β 1 β 2 Z[α] φ(β 1 )φ(β 2 ) β 1, β 2, Z[α] φ(β i ) β i Z[α] a + bα a b

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

1 UTF Youtube ( ) / 30

1 UTF Youtube ( ) / 30 2011 11 16 ( ) 2011 11 16 1 / 30 1 UTF 10 2 2 16 2 2 0 3 Youtube ( ) 2011 11 16 2 / 30 4 5 ad bc = 0 6 7 (a, b, a x + b y) (c, d, c x + d y) (1, x), (2, y) ( ) 2011 11 16 3 / 30 8 2 01001110 10100011 (

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp 200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

Collatzの問題 (数学/数理科学セレクト1)

Collatzの問題 (数学/数理科学セレクト1) / AICHI UNIVERSITY OF EDUCATION A { z = x + iy 0.100

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

mahoro/2011autumn/crypto/

mahoro/2011autumn/crypto/ http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1 1 2011.9.29, ( ) http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1.1 1.1.1 DES MISTY AES 1.1.2 RSA ElGamal 2 1 1.2 1.2.1 1.2.2 1.3 Mathematica

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

15 2 1 4 1.1........................... 4 1.2.............................. 4 1.3.............................. 5 2 5 2.1....................................... 5 2.2 Fermat....................................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

数理解析研究所講究録 第1955巻

数理解析研究所講究録 第1955巻 1955 2015 158-167 158 Miller-Rabin IZUMI MIYAMOTO $*$ 1 Miller-Rabin base base base 2 2 $arrow$ $arrow$ $arrow$ R $SA$ $n$ Smiyamotol@gmail.com $\mathbb{z}$ : ECPP( ) AKS 159 Adleman-(Pomerance)-Rumely

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name RSA Group Name RSA Code Elliptic Curve Cryptograrhy Group /Project No. 13-B /Project Leader 1009087 Takahiro

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

#include #include #include int gcd( int a, int b) { if ( b == 0 ) return a; else { int c = a % b; return gcd( b, c); } /* if */ } int main() { int a = 60; int b = 45; int

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

FinePix F50fd 使用説明書

FinePix F50fd 使用説明書 http://fujifilm.jp/ BL00629-101(1) NP-50 ab a 2 25 aon 64 b 37 33 90 85 85 98 3 4 B G B H,. /

More information

( )

( ) NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information