( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

Similar documents
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

IA

Gmech08.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

QMII_10.dvi

Chap11.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

meiji_resume_1.PDF


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

振動と波動

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

30

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Z: Q: R: C: sin 6 5 ζ a, b


重力方向に基づくコントローラの向き決定方法

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

DVIOUT-fujin

II 2 II

i

LLG-R8.Nisus.pdf

量子力学 問題

TOP URL 1


Untitled

Part () () Γ Part ,

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

tnbp59-21_Web:P2/ky132379509610002944

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

chap03.dvi

notekiso1_09.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


all.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

ohpmain.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

08-Note2-web

TOP URL 1

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2



. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

0 0. 0

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Gmech08.dvi

物性基礎

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i



( ) ( )

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Transcription:

(3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α! n (3) = e 2 (β α βα ) e 2 β α 2 0 β α 2 * α α d2 α π = (4) ψ ψ = β ψ = d 2 α α α ψ (5) π d 2 α β = π α α β d 2 α = π α e 2 α 2 2 β 2 +α β (6) *

ˆF â â ˆF = ˆF (â, â ) ˆF ˆF = ˆF n n = F n n (7) F n = ˆF n ˆF n ˆF = π 2 d 2 β d 2 α β β ˆF α α (8) β ˆF α = n F n β n α = e 2 ( β 2 + α 2) F (β, α) (9) F (β, α) = n F n (β ) (α) n! (0) ˆF = π 2 d 2 β d 2 α e 2 ( β 2 + α 2) F (β, α) β α () ˆF λ ˆF = λ λ λ λ (2) F n = λ λ λ λ n (3) F n λ λ λ λ λ n λ = T r ˆF (4) F n F (β, α) β α ˆF ˆF (9),(0) α ˆF α e α α = n α α [ n+ ( α ˆF ] α e α α! α α n α α n! ˆF n (5) α =0,α=0 = ˆF n (6) ˆF 2

2 ˆx ˆp ˆx ˆp Quadrature *2 ˆX ˆX 2 ˆX = â + â 2 ˆX 2 = â â 2i (7) ˆX = α 2 (â + â ) α = 2 (α + α ) = Re(α) (8) ˆX 2 = α 2 (â â ) α = 2 (α α ) = I(α) (9) α ˆX ˆX 2 ( ˆX ) 2 = 4 = ( ˆX 2 ) 2 (20) α = α e iθ α (X, X 2 ) ( ) *3 α ˆX θ α θ θ α = 0 ( ) θ = 2π n n n 2π ( ) α αe iωt αe iωt ˆX αe iωt = α cos ωt αe iωt ˆX 2 αe iωt = α sin ωt (2) error circle 2 ˆ E x (z, t) = ε o (â + â ) sin(kz) = 2ε o sin(kz) ˆX (22) *2 ˆxˆp Introductry Quantu Optics 2-3 *3 ˆX = 2 = ˆX 2 Introductry Quantu Optics 3-3

( 2 αe iωt ˆ E x αe iωt = 2ε o α sin(kz) cos(ωt) (23) ˆX 2 error circle 3 ψ ψ 2... ˆρ = i p i ψ i ψ i (24) p i i T r(ˆρ) = i p i = (25) ô ô = T r(ôˆρ) = i p i ψ o ô ψ i (26) 4

7 ˆρ = ρ n n (27) ρ n = ˆρ n ˆρ p n = ρ nn n 8 ˆρ = α ˆρ α α α d2 α d 2 α π 2 (28) ˆρ ˆρ = P (α) α α d 2 α (29) P (α) Glauber-Sudarshan P α ˆρ P (α) P (α) T rˆρ = T r P (α) α α d 2 α = P (α) n α α n d 2 α n = P (α) α n n α d 2 α n = P (α)d 2 α = P (α) P (α) P (α) *4 ˆρ P (α) u u 29 u ˆρ u = P (α) u α α u d 2 α = P (α)e 2 u 2 2 α 2 u α e 2 α 2 2 u 2 +α u d 2 α = e u 2 P (α)e α 2 e α u αu d 2 α (30) (3) { g(u) = f(α)e α u αu d 2 α f(α) = π g(u)e u α uα d 2 u 2 (32) g(u) = e u 2 u ˆρ u (33) *4 P (α) 0 P (α) δ(a α) 5

f(α) = P (α)e α 2 32 P (α) = e α 2 π 2 e u 2 u ˆρ u e u α uα d 2 u (34) β ˆρ = β β u ˆρ u = u β β u (35) = e β 2 e u 2 e u β+uβ P (α) = e α 2 e β 2 π 2 e u (α β) u(α β ) d 2 u δ 2 (α β) = δ[re(α) Re(β)] δ[i(α) I(β)] = π 2 e u (α β) u(α β ) d 2 u (36) P (α) = δ 2 (α β) (37) n n (ˆρ = n n ) u ˆρ u = u n n u = e u 2 ( u u) n P (α) = e α 2 (38) π 2 ( u u) n e u α αu d 2 u (39) P (α) = e α 2 = e α 2 2n α n α n π 2 ( u u) n e u α αu d 2 u 2n α n α n δ(2) (α) F (α, α ) F (α, α 2n [ ) α n α n δ(2) (α)d 2 2n F (α, α ] ) α = α n α n 6 α=0,α =0 (40) (4)

â â Ĝ(N) (â, â ) â â Ĝ (N) (â, â ) = C n (â ) n â (42) Ĝ(N) (â, â [Ĝ(N) ] ) = T r (â, â )ˆρ = T r P (α) C n (â ) n â α α d 2 α = P (α) C n α (â ) n â α d 2 α = P (α) C n α n α d 2 α = P (α)g (N) (α, α )d 2 α (43) P â α, â α â â O(â, â ) : O(â, â ) : O (N) (â, â ) (44) ˆn = ââ ˆn = â â = P (α) α 2 d 2 α (45) ˆn 2 = â ââ â : ˆn 2 := (â ) 2 â 2 (46) : ˆn 2 : = (â ) 2 â 2 = P (α) α 4 d 2 α (47) ˆρ P ˆB P ˆB = B p (α, α ) α α d 2 α (48) ˆB ˆB = T r( ˆB ˆρ) = n B p (α, α ) α α ˆρ n d 2 α n = B p (α, α ) α ˆρ α d 2 α (49) 7

Q ˆB = Î Q(α) = α ˆρ α π (50) Q(α)d 2 α = (5) P Q ˆB Q B Q (α, α ) α B α = e α 2 n B n B n = n B ˆB ˆρ P (α ) n (α) (52) (!) 2 ˆB = T r( ˆB ˆρ) = T r ˆBP (α) α α d 2 α = n ˆBP (α) α α n d 2 α n = P (α) α ˆB α d 2 α = P (α)b Q (α, α )d 2 α (53) ˆρ P ˆB Q (49) ˆB P ˆρ Q Q P *5 Weigner ˆρ W (q, p) 2π h q + 2 x ˆρ q 2 x e ipx h dx (54) q ± 2x ˆρ = ψ ψ W (q, p) 2π h ψ (q 2 x)ψ(q + ipx x)e h dx (55) 2 q + 2 x ψ = ψ(q + 2 ) W (q, p)dp = 2π h = ψ (q 2 x)ψ(q + 2 x) ψ (q 2 x)ψ(q + 2 x)δ(x)dx = ψ (q 2 x)ψ(q + 2 x) = ψ(q) 2 e ipx h dpdx (56) *5 8

q q W (q, p)dq = φ 2 (57) φ ψ(q) 57 W (q, p) 4 x x ˆρ(x) ρ(x) 0 (58) ρ(x) dx = (59) x n x n = dx x n ρ(x) (60) x n ˆρ(x) C(k) = e ikx = dxρ(x) = (ik) n x n (6) ρ(x) = dke ikx C(k) (62) 2π x n C(k) ˆρ(x) x n = d n C(k) i n dk n (63) k=0 n=0 C W (λ) = T r[ˆρe λâ λ â] = T r[ˆρ ˆD(λ)] (Wigner) C N (λ) = T r[ˆρe λâ e λ â] (norally ordered) C A (λ) = T r[ˆρe λâ e λ â] (antinorally ordered) (64) * 6 C W (λ) = C N (λ)e 2 λ 2 = C A (λ)e 2 λ 2 (65) *6 eâ+ ˆB = eâe ˆBe 2 [Â, ˆB] = e ˆBeÂe 2 [Â, ˆB] 9

(â ) â n = T r[ˆρ(â ) â n (+n) ] = λ ( λ ) n C N (λ) λ=0 (â â ) n = T r[ˆρ( â â ) n (+n) ] = λ n ( λ ) C A(λ) λ=0 {(â ) â n } W = T r[ˆρ{(â ) â n (+n) } W ] = λ ( λ ) n C W (λ) λ=0 (66) Cahill Glauber s C(λ, s) = T r[ˆρe λâ λ â+s λ 2 /2 ] (67) C(λ, 0) = C W (λ), C(λ, ) = C N (λ), C(λ, ) = C A (λ) (68) (antinorally) C A (λ) = T r[ˆρe λ âeλâ ] = T r[e λâ ˆρe λ â] = d 2 α α e λâ ˆρe λ â α π = d 2 αq(α)e λα λ α (69) Q Q(α) = π 2 C A (λ)e λ α λα d 2 λ (70) (29) P ˆρ C N (λ) = T r[ˆρe λâ e λ â] = P (α) α e λâ e λ â α d 2 α = P (α)e λα λ α d 2 α (7) P P (α) = π 2 C N (λ)e λ α λα d 2 λ (72) Wigner Wigner W (α) π 2 C W (λ)e λ α λα d 2 λ = π 2 C N (λ)e λ 2 2 e λ α λα d 2 λ (73) 0

P ˆρ T h ˆρ T h = + n n=0 ( ) n n n n (74) + n n n = exp( hω k B T ) (75) Q Q(α) = α ˆρ T h α /π = ˆρ π e α 2 T h n (α ) α n (!) /2 ( ) n n (α α) n = e α 2 π( + n) + n ) = ( π( + n) exp α 2 + n (76) 69 C A (λ) = π( + n) ) d 2 αexp ( α 2 e λα λ α + n (77) α = (q + ip)/ 2,λ = (x + iy)/ 2,d 2 α = dqdp/2 C A (x, y) = 2π( + n) [ exp (q2 + p 2 ] ) e [i(yq xp)] dqdp (78) 2( + n) π e as2 e ±βs ds = a e β 2 4a (79) C A (λ) = exp[ ( + n) λ 2 ] (80) 65C N (λ) = C A (λ)e λ 2 72 P (α) = α 2 = α 2 π n e n e n λ 2 e λ α λα d 2 λ Q Wigner (ˆρ = β β ) Q (8) Q(α) = π α β 2 = π e α β 2 (82)

(ˆρ = n n ) Q(α) = π α n 2 = π exp( α 2 ) α 2n (83) 3 Q β 73Wigner W (α) = 2 (84) π e 2 α β 2 W (α) = 2 π ( )n L n (4 α 2 )e 2 α 2 (85) L n (z) = 2πi e zt/( t) dt ( t)tn+ (Laguerre Polynoial) (86) ( 4) Wigner Q Wigner 3 (β = 0) (n = 4) Q α 4 (β = 0) (n = 3) Wigner α 2

5 ( (4) (2) α α d 2 α = e α 2 n α n α! n d 2 α (87) α = re iθ,d 2 α = rdrdθ α α d 2 α = n n 2π dre r2 r n++! 0 0 dθe i(n )θ } {{ } 2πδ n (88) r 2 = y,2rdr = dy α α d 2 α = π n n n dye y y n 0 } {{ } (89) α α d 2 α = π n = 0 n n = π (90) (4) 3