反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Similar documents
プログラム


本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

TOP URL 1

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

rcnp01may-2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

0406_total.pdf

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

PowerPoint Presentation

第86回日本感染症学会総会学術集会後抄録(I)

Mott散乱によるParity対称性の破れを検証

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =


nsg04-28/ky208684356100043077

arxiv: v1(astro-ph.co)

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

抄録/抄録1    (1)V

main.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

ohpmain.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

パーキンソン病治療ガイドライン2002

研修コーナー

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

chap10.dvi

A

nsg02-13/ky045059301600033210

Lecture 12. Properties of Expanders

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.


(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

,,..,. 1

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

スライド 1

TOP URL 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

TOP URL 1

I

GJG160842_O.QXD

nenmatsu5c19_web.key

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 2 2 (Dielecrics) Maxwell ( ) D H

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

DVIOUT-fujin

201711grade1ouyou.pdf

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

newmain.dvi

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

SUSY DWs

DaisukeSatow.key

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

多体問題

70 : 20 : A B (20 ) (30 ) 50 1

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

数学の基礎訓練I

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

chap9.dvi


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

『共形場理論』

LLG-R8.Nisus.pdf

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C


Transcription:

.... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2

. Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state?

. D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N bound state Qq + qqq Previous work DN Yasui,Sudoh 1 π DN,BN 1 S.Yasui and K.Sudoh, Phys Rev. D 80, 034008 (2009)

. Heavy meson and Heavy quark symmetry Heavy quark symmetry 2 (HQS) Isuger Wise 2 m Q Heavy quark spin symmetry Spin-spin interaction 0 { Heavy pseudoscalar meson D(0 ) Heavy vector meson D (1 ) P P { md m D 140 MeV m B m B 45 MeV P N mixing 2 N.Isuger and M.B.Wise, Phys. Rev. Lett. 66,1130(1990)

. P N mixing and π exchange interaction P l = 0 N m K m K 400 MeV P π l = 2 π l = 0 N { md m D 140 MeV m B m B 45 MeV Couple P N channel with P N system P N P N mixing π

...... HQS π, ρ, ω S

. Interactions Heavy quark effective theory 3 L πhh = ig π Tr [ H b γ µ γ 5 A µ ba H a ] L vhh = iβtr [ H b v µ (ρ µ ) ba Ha ] + iλtr [ Hb σ µν F µν (ρ) ba Ha ] H a = 1+ v 2 [ P a µ γ µ P a γ 5], Ha = γ 0 H a γ 0 vector pseudoscalar A ν = i ν ˆπ, ρ µ = ig v ˆρ µ, F µν (ρ) = µ ρ ν ν ρ µ f π 2 Bonn model 4 L πnn = ig πnn Nb γ 5 N ( aˆπ ba L vnn = g vnn Nb γ µ (ˆρ µ ) ba + κ ) σ µν ν (ˆρ µ ) ba N a 2m N H π, ρ, ω H N N 3 R.Casalbuoni,et al. Phys Rept.,281 (1997) 145 4 R.Machleidt,et al. Phys Rept.,149 (1987) 1

. P N and P N system We investigate J P = 1/2 and 3/2 state. Various coupled channels for J P = 1/2, 3/2 state. { P N (1) J P = 1/2 state 2 S 1/2 P N 2 S 1/2, 4 3-channels D 1/2 { P N (2) J P = 3/2 state 2 D 3/2 P N 4 S 3/2, 4 D 3/2, 2 4-channels D 3/2

. P N and P N system We investigate J P = 1/2 and 3/2 state. Various coupled channels for J P = 1/2, 3/2 state. { P N (1) J P = 1/2 state 2 S 1/2 P N 2 S 1/2, 4 3-channels D 1/2 bound state (I = 0) { P N (2) J P = 3/2 state 2 D 3/2 P N 4 S 3/2, 4 D 3/2, 2 4-channels D 3/2 no bound state

. P N and P N system We investigate J P = 1/2 and 3/2 state. Various coupled channels for J P = 1/2, 3/2 state. { P N (1) J P = 1/2 state 2 S 1/2 P N 2 S 1/2, 4 3-channels D 1/2 bound state (I = 0) { P N (2) J P = 3/2 state 2 D 3/2 P N 4 S 3/2, 4 D 3/2, 2 4-channels D 3/2 resonance?

. P N and P N system We investigate J P = 1/2 and 3/2 state. Various coupled channels for J P = 1/2, 3/2 state. { P N (1) J P = 1/2 state 2 S 1/2 P N 2 S 1/2, 4 3-channels D 1/2 bound state (I = 0) { P N (2) J P = 3/2 state 2 D 3/2 P N 4 S 3/2, 4 D 3/2, 2 4-channels D 3/2 resonance? Solve coupled channel equation!

Result for J P = 1/2 state

. The bound state with (I, J P ) = (0, 1/2 ) The bound states exist in (I, J P ) = (0, 1/2 ) state. Table: Binding energy and root mean square radii in (I, J P ) = (0, 1/2 ) state. DN(π) DN(πρ ω) BN(π) BN(πρ ω) E B [MeV] 1.60 2.13 19.50 23.04 r 2 1/2 [fm] 3.5 3.2 1.3 1.2 π π, ρ, ω π D N mixing B N mixing

Result for J P = 3/2 state

. The scattering state with (I, J P ) = (0, 3/2 ) J P = 3/2 Phase shift

. The scattering state with (I, J P ) = (0, 3/2 ) J P = 3/2 Phase shift Phase shift for DN( 2 D 3/2 ) Phase shift for BN( 2 D 3/2 ) 4 4 δ [rad] 3 2 DN( 2 D 3/2 ) δ [rad] 3 2 BN( 2 D 3/2 ) 1 1 0 0 50 100 150 200 250 300 E [MeV] 0 0 10 20 30 40 50 E [MeV]

. The scattering state with (I, J P ) = (0, 3/2 ) J P = 3/2 Phase shift Phase shift for DN( 2 D 3/2 ) Phase shift for BN( 2 D 3/2 ) 4 4 δ [rad] 3 2 π/2 DN( 2 D 3/2 ) δ [rad] 3 2 BN( 2 D 3/2 ) 1 1 0 0 50 100 150 200 250 300 E [MeV] 0 0 10 20 30 40 50 E [MeV] Phase shifts cross π/2 Resonant state

. The scattering state with (I, J P ) = (0, 3/2 )! Phase shift for DN( 2 D 3/2 ) Phase shift for BN( 2 D 3/2 ) 4 4 δ [rad] 3 2 1 DN( 2 D 3/2 ) E re = 113.19 MeV Γ = 17.72 MeV δ [rad] 3 2 1 BN( 2 D 3/2 ) E re = 6.93 MeV Γ = 0.095 MeV 0 0 50 100 150 200 250 300 E [MeV] 0 0 10 20 30 40 50 E [MeV] Phase shifts cross π/2 Resonant state

. The resonance in (I, J P ) = (0, 3/2 ) channel P N P N { P N J P = 3/2 state 2 D 3/2 Ignored P N 4 S 3/2, 4 D 3/2, 2 3-channels D 3/2

. The resonance in (I, J P ) = (0, 3/2 ) channel P N P N { P N J P = 3/2 state 2 D 3/2 Ignored P N 4 S 3/2, 4 D 3/2, 2 3-channels D 3/2 P N Table: Bounding energy for P N system Binding energy [MeV] D N 11.50 B N 21.67 Feshbach

. The resonance in (I, J P ) = (0, 3/2 ) channel E D N bound state D N Feshbach resonance 140 MeV DN( 2 D 3/2 )

. The resonance in (I, J P ) = (0, 3/2 ) channel E D N D N quasi-bound state (Resonance) ////////////////////////////// E re = 113.5 MeV Γ = 17.7 MeV 140 MeV Feshbach resonance DN( 2 D 3/2 )

. The resonance in (I, J P ) = (0, 3/2 ) channel E D N D N quasi-bound state (Resonance) ////////////////////////////// E re = 113.5 MeV Γ = 17.7 MeV 140 MeV DN( 2 D 3/2 ) Feshbach resonance D N mixing < B N mixing 45 MeV B N B N quasi-bound state (Resonance) ////////////////////////////// E re = 6.9 MeV Γ = 0.09 MeV BN( 2 D 3/2 )

. Summary Heavy quark symmetry DN BN (I, J P ) = (0, 3/2 ) Feshbach P N π

. F Λ vertex F α (Λ, q ) = Λ2 m 2 α Λ 2 + q 2 vertex Λ N Bonn potential Deuteron vertex Λ P Λ D = 1.35Λ N Λ B = 1.29Λ N Table: Cutoff parameter. Potential Λ N [MeV] Λ D [MeV] Λ B [MeV] π 830 1121 1070 π, ρ, ω 846 1142 1091