Gmech08.dvi

Similar documents
Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Gmech08.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1



A

sec13.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

TOP URL 1

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

08-Note2-web

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Acrobat Distiller, Job 128

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

DVIOUT

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

Untitled

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

応力とひずみ.ppt

pdf

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

all.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

mugensho.dvi

untitled

第1章 微分方程式と近似解法

notekiso1_09.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Chap11.dvi

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

C:/KENAR/0p1.dvi


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

85 4

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


77

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

重力方向に基づくコントローラの向き決定方法

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h


8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

振動と波動

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

KENZOU

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x ( ) x dx = ax

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Part () () Γ Part ,

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

dynamics-solution2.dvi

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

meiji_resume_1.PDF

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

ユニセフ表紙_CS6_三.indd

Korteweg-de Vries

Note.tex 2008/09/19( )

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

all.dvi


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


( ) ( )

K E N Z OU

untitled

°ÌÁê¿ô³ØII

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

Transcription:

145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1)

146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2 r 2 = d2 r 0 2 + d2 r 2 (13.5) (13.4) m d2 r 2 = F + F, F = m d2 r 0 2 (13.6) S (13.6) F F F S 0 S S dr 0 = v 0 =, d 2 r 0 2 0, F = m d2 r 0 2 = 0 (13.7) S m d2 r 2 = F (13.8)

13.1. 147 13.1.2 ω a m 13.2 xy y y y F F x F O x O x 13.2: x = a cos ωt, y = a sin ωt (13.9) F x = m d2 x 2 = mω2 x, F y = m d2 y 2 = mω2 y (13.10) F = mω 2 r (13.11) ω S 13.2 F F = F = mω 2 r (13.12) v x 13.3 ω

148 13 Δt Δx = v Δt ω Δθ = ωδt Δy = Δx Δθ = vω(δt) 2 2vω 2 mωv y y y x O x O x 13.3: S z S z ω S S m d2 x 2 = F x, m d2 y 2 = F y (13.13) S S (x, y) S (x,y ) x = x cos ωt y sin ωt, y = x sin ωt + y cos ωt (13.14) 13.4 t =0 (13.14) d 2 x 2 = d 2 y 2 = ( d 2 x ( 2 d 2 x 2 ) dy 2ω ω2 x dy 2ω ω2 x ( d 2 y cos ωt ) ( 2 d 2 y sin ωt + 2 ) dx +2ω ω2 y dx +2ω ω2 y ) sin ωt cos ωt (13.15) F S (F x,f y ) S (F x,f y ) F x = F x cos ωt F y sin ωt, F y = F x sin ωt + F y cos ωt (13.16) 13.4 (13.15) (13.16) S

13.2. 149 (13.13) m d2 x 2 = F x +2mω dy + mω2 x m d2 y 2 = F y 2 mω dx + mω2 y (13.17) S S y y y y y F y y r x x F y F F x x O ωt x x O ωt F x x 13.4: F (C) F (C) x =2mωv y, F (C) y = 2 mωv x (13.18) v x v y S v F (C) v = F (C) x v x + F (C) y v y = 0 (13.19) S v mω 2 r 13.2 13.2.1 z

150 13 S S S S S S S P S P r S S P S P S 13.5 t S S O l ω ω l Q dr r r +dr θ O 13.5: ω (13.20) P S P S dr = ω r (13.21) P Q t t + P r r +dr dr ω Q r sin θ θ P r dr dr = ω rsin θ P dr = ωrsin θ. (13.22) r l P r ω ω r sin θ ω r (13.21) (13.21) (13.21) P r S r = x e x + y e y + z e z (13.23)

13.2. 151 P S x, y, z e x, e y, e z P r dr = de x x + y de y + z de z (13.24) S ω ij de x de y de z = ω 11 e x + ω 12 e y + ω 13 e z = ω 21 e x + ω 22 e y + ω 23 e z = ω 31 e x + ω 32 e y + ω 33 e z (13.25) e x e x =1 e x e y =0 e x de x =0, e x de y + de x ω ij e y = 0 (13.26) ω 11 = ω 22 = ω 33 =0 ω 12 + ω 21 =0, ω 23 + ω 32 =0, ω 31 + ω 13 =0. (13.27) ω 1 = ω 23 = ω 32, ω 2 = ω 31 = ω 13, ω 3 = ω 12 = ω 21 (13.28) S (13.25) de x de y de z = ω 3 e y ω 2 e z = ω 3 e x +ω 1 e z = ω 2 e x ω 1 e y P (13.24) (13.29) dr =(ω 2z ω 3 y ) e x +(ω 3 x ω 1 z ) e y +(ω 1 y ω 2 x ) e z (13.30) ω 1, ω 2, ω 3 r (13.30) x ω = ω 1 e x + ω 2 e y + ω 3 e z. (13.31) ω 2 z ω 3 y =(ω r ) x

152 13 y z r (13.30) ω r (13.21) (13.31) ω S ω ω S 13.2.2 S S S r = x e x + y e y + z e z (13.32) S d r = dx e x + dy e y + dz e z. (13.33) (13.32) e x, e y, e z x, y, z S x y z S S S S S (13.21) S (13.33) dr = d r + ω r (13.34) (13.34) r A S S A = A x e x + A y e y + A z e z = A x e x + A y e y + A z e z (13.35) da d A = da x e x + da y e y + da z e z (13.36) = da x e x + da y e y + da z e z (13.37) S A da = d A + ω A. (13.38)

13.2. 153 da/ A(t) d A/ S ω A S S 13.2.3 S S S 13.6 S (13.21) (13.38) S S r 0 S z z r S r O y r = r 0 + r (13.39) r 0 S v x v = dr = dr 0 + dr (13.40) O y S (13.38) x 13.6: dr = d r + ω r. (13.41) v = dr = dr 0 + d r + ω r (13.42) dv = d2 r 0 2 = d2 r 0 2 + d ( d r ) + ω r ( + d d r ) ( d + ω r r ) + ω + ω r = d2 r 0 2 + d 2 r 2 + ω d r + ω (ω r )+ d ω r (13.43)

154 13 dω = d ω + ω ω = d ω (13.44) ω ω =0 S m dv = F (13.45) (13.43) S m d 2 r 2 = F m d2 r 0 2 2m (ω d r ) m ω (ω r ) (13.46) m dω r S S S m ω (ω r )= m(ω r ) ω + mω 2 r (13.47) ω () ω ω 2 r (13.46) S S 13.6

13.3. 155 13.3 13.3.1 (13.46) (13.46) z y S O r 0 λ x 13.7 λ S 13.7: z x y S O (13.46) (13.46) 0 S (13.46) r 0 O O r 0 =6.4 10 6 m. (13.48) ω ω = 2π 24 3600 =9.3 10 5 s 1 (13.49)

156 13 (13.46) S S O (13.38) dr 0 = ω r 0 (13.38) d 2 r 0 2 = d ( ) dr0 = ω dr 0 = ω (ω r 0 ) S (13.46) m d2 r 0 2 = m ω (ω r 0) (13.50) (13.46) O λ 13.7 m ω (ω r 0 )=mω 2 r 0 cos λ (sin λ e x + cos λ e z ) (13.51) () r 0 cos λ O (13.46) m ω (ω r ) O r r r 0 O (13.51) (13.51) (λ =0) mω 2 r 0 ω 2 r 0 =3.4 10 2 ms 2 g =9.8 ms 2 1/300 (13.46) F (C) = 2m (ω d r ). (13.52)

13.3. 157 λ 13.7 ω x = ω cos λ, ω y =0, ω z = ω sin λ (13.53) 13.8 (13.52) F (C) F (C) x = 2mωsin λ dy F (C) y = 2mω ( sin λ dx F (C) z = 2mωcos λ dy ) dz + cos λ (13.54) ω z d r = ( ) dx, dy, dz. x z y y x z λ 13.8: x 13.7 m d2 x 2 = F x +2mωsin λ dy m d2 y 2 = F y 2 mω ( sin λ dx m d2 z 2 = F z mg+2mωcos λ dy ) dz + cos λ (13.55) mg F m v mωv ωv v =1ms 1 ωv 10 4 ms 2 10 1

158 13 13.3.2 13.7 m L S xy m d2 x 2 = S x dy +2mωsin λ L m d2 y 2 = S y (13.56) dx 2 mωsin λ L z L x y 13.9 (13.56) x y ( d x dy y dx ) = ω sin λ d (x2 + y 2 ) 13.9: x dy y dx = ω sin λ (x2 + y 2 ) (13.57) x = y =0 (= 0) xy (13.57) x = r cos ϕ, y = r sin ϕ (13.58) dϕ = ω sin λ (13.59)

13.3. 159 ϕ ω sin λ 13.9 (λ >0) (λ <0) ω sin λ λ = 1 sin λ x = y =0 13.3.3 V F P F C 13.10: 13.10 13.10 F P F C

160 13 13.11 F f 30-40 15-25 V F C F P F f 13.11: 13.3.4 (13.55) F x = F y = F z =0 13.7 x y z z z x y m d2 x 2 =0, m d2 x 2 dz = 2mω cos λ, t =0 x = y =0, z = h, m d2 z = mg (13.60) 2 dx = dy = dz = 0 (13.61) h x z y x =0, z = h 1 2 gt2 (13.62) d 2 y =2ωgcos λt (13.63) 2 y = 1 3 ωgcos λt3 = 1 [ ] 2(h z) 3/2 3 ωgcos λ (13.64) g t y >0