FX ) 2



Similar documents
FX自己アフリエイトマニュアル




FXneo FXneo PC FXneo FX 1 2

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

[FX8/FX8C]シリーズカタログ

May Copyright 2016 HIROSE ELECTRIC CO., LTD. All Rights Reserved w

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

\\Comet\MrAD\マニュ~1\原稿\DSE-


n S (n) = n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (



[FX18]シリーズカタログ

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

lecture


4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

【改改】FX取引×自己アフィリマスター講座

³ÎΨÏÀ

brother.\..2.ai

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

A

t VaR ( vs 5 t ) t ( ) / 16

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

3 3.1 * *2 2

JNB-FX PLUS JNB-FX PLUS 2p 3p 6p 7p 9p 10p 11p 12p 13p 14p 1

<4D F736F F D A939D8D8795F18D908F C678A A2E646F63>

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 c Koichi Suga, ISBN

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

曲面のパラメタ表示と接線ベクトル

Abstract :

Chap9.dvi

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

09 II 09/11/ y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2


Transcription:

(FX) 1 1 2009 12 12 13 2009 1

FX ) 2

1 (FX) 2 1 2 1 2 3

2010 8 FX 1998 1 FX FX 4

1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100 99 1 () 2002 3 2009 3 2009 3 2003 5

() 2009 2 4 28 5 29 8 1 2010 8 1 50 2011 8 1 25 300 400 400 400 6

2007 10 2 20 30 7.1 84.7 8 20 90.8 500 76.6 2 7

2 8

3 1 3 1 5 8 8 8 2001 2009 2009 1 87.10 1995 79.75 2009 1 80 80 1 90 80 95 80 15 15 1 16 1 95 16 5.94 5.94 6 8 2 3 9

1 7.91 5 2004 7 7 2009 7 6 1 95 1 95 7.91 87.48 102.51 68.26 1 87.48 102.51 68.26 1 2 3 95 2 3 100 365 365 1 250 68.26 170.65 95.44 238.6 99.73 249.325 1 2008 5 8 7.913 72.45 117.54 1 09 7 10 7 72.45 79 72 72 1 95 72 95 72 23 23 1 24 1 10

95 24 3.96 4 2.2 1.64 25 1 3 4 20 1 50 100 11

4 1 () 400 300 1 100 1 2 FX FX 7 100 25 10 1 2 2 100 100 25 10 12

FX FX FX 13

14