2??? 1959 DTN Application Protocol Data Units(APDU) 6) IP 1 DTN PBR TCTR TCTR (1) ( TCTR ) (2) ( 3.3 ) 2000[m] 2000[m] 100 (3) (4) (5) 2 3 TCTR 4 5 6



Similar documents
DTN DTN DTN DTN i

1 Web DTN DTN 2. 2 DTN DTN Epidemic [5] Spray and Wait [6] DTN Android Twitter [7] 2 2 DTN 10km 50m % %Epidemic 99% 13.4% 10km DTN [8] 2

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

MANET MANET MANET (DTN: Delay Tolerant Network) DTN DTN DTN DTN [7], [3], [11] [8] % N M m M n N D(m, n) Size(m) m MD(m) m M, n N, MD(m) = max{d

修士論文


THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

外国語学部_紀要34号(横書)/11_若山

WMN Wi-Fi MBCR i

OSPF OSPF.

i

DEIM Forum 2009 B4-6, Str

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

2015 3

P2P P2P peer peer P2P peer P2P peer P2P i

Publish/Subscribe KiZUNA P2P 2 Publish/Subscribe KiZUNA 2. KiZUNA 1 Skip Graph BF Skip Graph BF Skip Graph Skip Graph Skip Graph DDLL 2.1 Skip Graph S

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

IP IPv4-IPv6

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

soturon.dvi

58 10

3_39.dvi

586 HEMS 1 HEMS Table 1 Various comparisons of Smart Tap HEMS. HEMS HEMS 1 HEMS HEMS PLC Power Line Communication EL HEMS 2) 3) Bluetooth 4),5) ZigBee

IPSJ SIG Technical Report * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

TCP T ransmission Control Protocol TCP TCP TCP TCP TCP TCP TCP TCP c /(18)

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

29 Short-time prediction of time series data for binary option trade

橡 PDF

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )


& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

P2P P2P Winny 3 P2P P2P 1 P2P, i

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Android LAN 1 1,, Google Android. Android, Android,. Android x86 CPU,,,. A study of performance improvement of a wireless LAN bases on Android termina

2) 2. DLNA DLNA (Version 1.5) 2 (DMC1) (SSDP) (DMS1, DMS2) (DMR1, DMR2, DMR3) (UDP) DMC1 3 DMS2 DMC1 DMS1 (HTTP) DMS1 DMR2 (RTP) DMR2 3. DLNA 4 DMC1 D

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

1 I/F I/F 1 6) MobileIP 7) 8) MN: Monile Node MN AR Mobility Anchor Point(MAP) MobileIP HMIP HMIP HA-MAP MN MAP MN MAP HMIP MAP MN 2 MobileIP Mo

8 P2P P2P (Peer-to-Peer) P2P P2P As Internet access line bandwidth has increased, peer-to-peer applications have been increasing and have great impact

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

9_4.dvi

IPSJ SIG Technical Report Vol.2010-SLDM-144 No.50 Vol.2010-EMB-16 No.50 Vol.2010-MBL-53 No.50 Vol.2010-UBI-25 No /3/27 Twitter IME Twitte

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

3_23.dvi

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Vol. 42 No. SIG 8(TOD 10) July HTML 100 Development of Authoring and Delivery System for Synchronized Contents and Experiment on High Spe

PeerPool IP NAT IP UPnP 2) Bonjour 3) PeerPool CPU 4) 2 UPnP Bonjour PeerPool CPU PeerPool PeerPool PPv2 PPv2 2. PeerPool 2.1 PeerPool PeerPool PoolGW

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

25 Removal of the fricative sounds that occur in the electronic stethoscope

075730G: 2008/7/4, /07/ A: J: E:

total.dvi

Dual Stack Virtual Network Dual Stack Network RS DC Real Network 一般端末 GN NTM 端末 C NTM 端末 B IPv4 Private Network IPv4 Global Network NTM 端末 A NTM 端末 B

wide93.dvi

Kyushu Communication Studies 第2号

Vol.11-HCI-15 No. 11//1 Xangle 5 Xangle 7. 5 Ubi-WA Finger-Mount 9 Digitrack 11 1 Fig. 1 Pointing operations with our method Xangle Xa

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

分散ストレージシステム (4) (5) (6) 書き込み 書き込み 読み出し 読み出し (2) コーディネータ 1 Fig. 1 Image of distributed storage system. 2 Fig. 2 Process flow of ( 1 ) ( 2 ) ( 3 )

wide97.dvi

Web Web Web Web Web, i

人工知能学会研究会資料 SIG-FPAI-B Predicting stock returns based on the time lag in information diffusion through supply chain networks 1 1 Yukinobu HA

IP RTP 2 QoS i

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

1

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

Vol. 45 No Web ) 3) ),5) 1 Fig. 1 The Official Gazette. WTO A

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2013-SLDM-160 No.7 Vol.2013-EMB-28 No /3/13 CAN-Ethernet 1,a) CAN-Ethernet CAN CAN CAN OMNeT++ CAN Ether

BS・110度CSデジタルハイビジョンチューナー P-TU1000JS取扱説明書

Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

LAN LAN LAN LAN LAN LAN,, i

The Journal of the Japan Academy of Nursing Administration and Policies Vol 7, No 2, pp 19 _ 30, 2004 Survey on Counseling Services Performed by Nursi


Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Web ( ) [1] Web Shibboleth SSO Web SSO Web Web Shibboleth SAML IdP(Identity Provider) Web Web (SP:ServiceProvider) ( ) IdP Web Web MRA(Mail Retrieval

ï\éÜA4*

Run-Based Trieから構成される 決定木の枝刈り法

Transcription:

Vol. 0 No. 0??? 1959 DTN 1 1 Delay (or Disruption) Tolerant Networks(DTN) DTN Potential-Based Routing(PBR) DTN Topology Change Tolerant Routing(TCTR) TCTR TCTR 100 Topology Change Tolerant Routing for Delay Tolerant Networks Hideya Ochiai 1 and Hiroshi Esaki 1 Delay (or Disruption) Tolerant Networks (DTN) are promised as an efficient message delivery scheme in physically unstable networks like wireless networks. However, because datalinks could be physically disrupted in DTN environment, global synchronization in the network is absolutely difficult, which indicates the traditional routing schemes cannot work appropriately. We propose Topology Change Tolerant Routing (TCTR), which do not need global synchronization in the network for message delivery. In fact, TCTR is a instance of Potential-Based Routing(PBR) which selects the next hop of messages only using the relative information with its neighbor nodes. We have developed a prototype system and TCTR simulator. We have confirmed that the implementation of TCTR is feasible. We have also evaluated TCTR in terms of message delivery time, transmission cost and message pool size with the simulator. 1. MANET Delay (or Disruption) Tolerant Networks(DTN) IP TCP DTN DTN ( ) DTN 1 The University of Tokyo (e.g., RIP 14), OSPF 16), MPLS 18), AODV 17) ) DTN Topology Change Tolerant Routing(TCTR) TCTR Potential-Based Routing(PBR) TCTR 1

2??? 1959 DTN Application Protocol Data Units(APDU) 6) IP 1 DTN PBR TCTR TCTR (1) ( TCTR ) (2) ( 3.3 ) 2000[m] 2000[m] 100 (3) (4) (5) 2 3 TCTR 4 5 6 7 2. Delay (or Disruption) Tolerant Networks (DTN) 3) Epidemic Routing 20) Spray and Wait 19) (i.e., ) (i.e., ) Merugu 15) Leguay MobySpace 10) PROPHET 12) Francois 4) PBR (Gradient Descent Search) Basu 1)

Vol. 0 No. 0 DTN 3 Anycast 9)11) Volcano Routing Scheme(VRS) 5) PBR PWave 13) ZebraNet 8) History-based Protocol PBR DTN 3. TCTR TCTR PBR TCTR G = (N, E) G n( N) nbr(n) n n d( N) t d n V d (n, t) V d (n, t) d 3.1 Potential-Based Routing(PBR) t n d M d (n, t) k nbr(n) F d k (n, t) F d k (n, t) {V d (k, t) V d (n, t)} (1) M d (n, t) nexthop d (n, t) PBR k nbr(n), F d k (n, t) α nexthop d (n, t) = Φ (2) k nbr(n), F d k (n, t) > α nexthop d (n, t) = {k F d k (n, t) = max Fk d (n, t)} (3) k nbr(n) α 2 α 1 Potential-Based Routing(PBR) Fig. 1 Potential-Based Routing(PBR) (Φ ) 3 α 1 d 1 PBR G n k 1, k 2 k 1 n k 1 d PBR 3.2 PBR 2,3 1

4??? 1959 2 d = n6 Fig. 2 Potential formation and message delivery path for destination d = n6 in a physically connected network. V d (n, t + 1) = V d (n, t) + D min k nbr(n) {0, V d (k, t) V d (n, t)} +ρ (4) d N tv d (d, t) = 0 (5) n N V d (n, 0) = 0 (6) V d (n, t) D(0 < D < 1) ρ(0 < ρ < D) 5 6 0 0 V d (n, t) 3 ( 2) 2 d = n6 V n6 (n, t) 2 n6 ( 3) G 1 = (N 1, E 1 ), G 2 = (N 2, E 2 ) G 1 (i.e., d N 1 ) N 2 3 n2 n4 ; n0, n1, n2, n3 ρ Fig. 3 Potential formation when n2 n4 link has been disrupted. Potentials of n0, n1, n2, n3 goes up with the velocity of ρ. (c ) n N2 V d (n, t) ρt + c (7) (t ) 3 {n0,..., n3} ρ {n0,..., n3} ( 4) 4 n1 n5 4 {n0,..., n3} (i.e., ) 4 d d

Vol. 0 No. 0 DTN 5 4 n1 n5 n0, n1, n2, n3 Fig. 4 When n1 n5 link has been setup, potentials of n0, n1, n2, n3 goes down with making message delivery curves. 3.3 4 k nbr(n) V d (k, t) t TCTR n k ( V d n (k, t) ) k V d k (k, t) T V d k (k, t) V d k (k, t T ) = V d k (k, t) V d n (k, t) (8) V d n (k, t) V d k (k, t) T V d n (n, t) t (9) 4 i N, V d i (i, t) = V (t) V(t) 3 2,3 α = 0 nexthop d (n, t) = Φ 7 Vk d V (t) (n, t) V (t) T t 1 Fk d V (t) (n, t) = T t (10) (11) ( V (T ) t > 0) 3 nexthop d (n, t) = k nbr(n) k (12) 1 5 A, B, C A B C A C B C C A, B C A B B A C B B B C A

6??? 1959 Fig. 5 5 An example of message overflow phenomenon 4 n ( 1 ) Advertisement Manager: UDP Multicast 6 Fig. 6 Prototype System Overview 2,3 α β β < α (13) α β 9 β = T max V d (n, t) t 4 max V d (n, t) t (14) = ρ (15) β = ρ T (16) 4. 4.1 6 k nbr(n) V (k, t), V (n, t) Multicast Socket V (k, t) PotentialTable PotentialTable n V (n, t) UDP Multicast ( 2 ) Potential Table: k nbr(n) V (k, t) V (n, t) V (n, t + 1) 4 ( 3 ) Forwarding Table: Potential Table V d (n, t) k nbr(n) V d (k, t) 2 3 d ( 4 ) Message Manager: Message Manager (Send) Message Manager n (Receive) n d Forwarding Table ACK

Vol. 0 No. 0 DTN 7 7 Fig. 7 TCTR Simulator Overview Message Manager () Forwarding Table () () (Send) (Receive) C OS Linux 2.6.22 802.11g 4.2 TCTR 7 3 ( 1 ) Node: Node Node Node Locator ( ) ( 2 ) Node Locator: Node (2 ) ( 3 ) Mobility Manager: Node Locator () Forwarding Table () 8 Fig. 8 Mobility model used in the experiment () (Send) (Receive) Java JavaVM 1.5.0 OS Linux 2.6.15 5. Flooding-Based Routing(FBR) : (1) (2) (3) ( ) D ρ D = 0.2 ρ = 0.02 5.1 8 Home A Home B Meeting Point

8??? 1959 9 Fig. 9 Potential patterns with the prototype-based experiment 10 Fig. 10 Potential patterns with the simulation-based experiment 1 4 Home A B 2 3 Home A B 2 3 Meeting Point Home A, Meeting Point, Home B ( )20m 8 2 3 2 8 20 4 1 10 1 100 9 1 V 1 (n, t) t = 3600 t = 4800 (t 3600) n 1, n 2, n 3, n 4 1, 2 3 4 t = 60 n 2 n 1 V (n 2, t) t = 580 n 3 n 2 V (n 3, t) 122 n 2 n 2 n 3 Meeting Point t = 1140 n 4 n 3 n 2 n 1 n 4 n 2 n 1 105 121 n 3 n 1 TCTR 10 1 V 1 (n, t) t = 3600 t = 4800 ( (t 3600) ) 5.2 5 C 16 0 < T < 1, ρ = 0.02 0.02 α {0.000, 0.010, 0.015, 0.020, 0.025, 0.030} 5 1 α 3 5 Node A Node B (Status) A Node A B Node B Φ

Vol. 0 No. 0 DTN 9 Table 1 1 An Analysis of the Message Overflow Threshold α Node A Node B Status 1 2 3 1 2 3 0.000 B B B A A A 0.010 Φ B B A A Φ 0.015 Φ Φ B A A Φ 0.020 Φ B B Φ Φ Φ 0.025 Φ Φ Φ Φ Φ Φ 0.030 Φ Φ Φ Φ Φ Φ α α 0.02 5.3 100 Flooding-Based Routing(FBR) FBR A( N) B( N) A B M A M B A B m M A m M B T ransfer A (m, B) (17) m M B m M A T ransfer B(m, A) (18) T ransfer X (m, Y ) X m Y m(m M A m M B) (19) m FBR FBR TCTR Time To Live(TTL) (FBR TCTR ) 11 Fig. 11 Delivery Time Relationship between FBR and TCTR 2000[m] 2000[m] 0 300[m] 100 150[m] 0 0.01[Hz] Random Way Point(RWP) 2) RWP t=0 t=10000 (t=10000 TCTR ) 5.3.1 11 FBR T ime (F BR) TCTR T ime (T CT R) ( : ) T ime (T CT R) = T ime (F BR) T ime (T CT R) T ime (F BR) 12 T ime (T CT R) T ime F BR 33% (FBR) 2 50% 3

10??? 1959 Fig. 12 12 Efficiency in Delivery Time and its Distribution 14 Fig. 14 The Average Message Pool Size 5.3.3 14 FBR TCTR 13 Fig. 13 The Total Message Transmission in the Network 10 5% 5.3.2 13 FBR TCTR ( t = 10000 0 ) a( N) b( N, a b) FBR TCTR 10 FBR (=100 ) 100 100 10 6 TCTR 100 100 10 5 ( t = 10000 0 ) FBR 10000 TCTR 97 FBR 100 100 100 100 = 10000 TCTR 6. β 3.3 TCTR α 100 FBR FBR

Vol.0 No.0 DTN 11 3 TCTR FBR 10 100 TCTR 7) 7. DTN TCTR PBR TCTR TCTR 100 FBR 3 10 1 100 1 1) Basu, A., Lin, A. and Ramanathan, S.: Routing Using Potentials: A Dynamic Traffic-Aware Routing Algorithm, ACM SIGCOMM 2003, pp.37 48 (2003). 2) Bettstetter, C., Resta, G. and Santi, P.: The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks, IEEE Transactions on Mobile Computing, Vol.2, No.3, pp.257 269 (2003). 3) Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets, ACM SIG- COMM 2003, pp.27 34 (2003). 4) Francois, J.-M. and Leduc, G.: Delivery Guarantees in Predictable Disruption Tolerant Networks, Lecture Nodes in Computer Science, Vol.4479, pp.167 178 (2007). 5) Ganjali, Y. and McKeown, N.: Routing in a Highly Dynamic Topology, IEEE SECON, pp. 164 175 (2005). 6) Iren, S., Amer, P.D. and Conrad, P.T.: The Transport Layer: Tutorial and Survey, ACM Computing Surverys, Vol.31, No.4, pp.360 404 (1999). 7) Jain, S., Fall, K. and Patra, R.: Routing in a Delay Tolerant Network, ACM SIGCOMM 2004, pp.145 158 (2004). 8) Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.-S. and Rubenstein, D.: Energy- Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet, ACM SIGOPS, pp.96 107 (2002). 9) Kumar, P., Kuri, J., Nuggehalli, P., Strasser, M., May, M. and Plattner, B.: Connectivityaware Routing in Sensor Networks, IEEE SensorComm, pp.14 20 (2007). 10) Leguay, J., Friedman, T. and Conan, V.: DTN Routing in a Mobility Pattern Space, ACM SIGCOMM workshop on Delay-tolerant networking, pp.276 283 (2005). 11) Lenders, V., May, M. and Plattner, B.: Density-based vs. Proximity-based Anycast Routing for Mobile Networks, IEEE INFO- COM, pp.1 13 (2006). 12) Lindgren, A., Doria, A. and Schelen, O.: Probabilistic Routing in Intermittently Connected Networks, Lecture Nodes in Computer Science, Vol.3126, pp.239 254 (2004). 13) Liu, H., Zhang, Z.-L., Srivastava, J. and Firoiu, V.: PWave: A Multi-source Multi-sink Anycast Routing Framework for Wireless Sensor Networks, Lecture Nodes in Computer Science, Vol.4479, pp.179 190 (2007). 14) Malkin, G.: RFC2453: RIP Version 2 (1998). 15) Merugu, S., Ammar, M. and Zegura, E.: Routing in Space and Time in Networks with Predictable Mobility, Technical report, Georgia Institute of Technology (2004). 16) Moy, J.: RFC2328: OSPF Version 2 (1998). 17) Perkins, C., Belding-Royer, E. and Das, S.: RFC1058: Ad hoc On-Demand Distance Vector (AODV) Routing (2003). 18) Rosen, E., Viswanathan, A. and Callon, R.: RFC3031: Multiprotocol Label Switching Architecture (2001). 19) Spyropoulos, T., Psounis, K. and Raghaven-

12??? 1959 dra, C.S.: Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks, ACM SIGCOMM workshop on Delay-tolerant networking, pp.252 259 (2005). 20) Vahdat, A. and Becker, D.: Epidemic Routing for Partially-Connected Ad Hoc Networks, Technical report, Duke University (2000).