( )



Similar documents
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

( )

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

Web Web Web Web Web, i

1 1 tf-idf tf-idf i

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

kut-paper-template.dvi

,,,,., C Java,,.,,.,., ,,.,, i

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

e-learning e e e e e-learning 2 Web e-leaning e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware

揃 Lag [hour] Lag [day] 35

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

FA

29 jjencode JavaScript

08医療情報学22_1_水流final.PDF

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

fiš„v5.dvi

Web Basic Web SAS-2 Web SAS-2 i

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

大学における原価計算教育の現状と課題

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

<95DB8C9288E397C389C88A E696E6462>


(a) (b) 1 JavaScript Web Web Web CGI Web Web JavaScript Web mixi facebook SNS Web URL ID Web 1 JavaScript Web 1(a) 1(b) JavaScript & Web Web Web Webji

untitled

, IT.,.,..,.. i

28 Horizontal angle correction using straight line detection in an equirectangular image

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

@08470030ヨコ/篠塚・窪田 221号

58 10

kut-paper-template.dvi

( ) ATR

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

2017 (413812)

日本看護管理学会誌15-2

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]


DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

2 ( ) i


IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Transcription:

NAIST-IS-MT1051071 2012 3 16

( )

Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i

Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi Abstract This thesis proposes a method to acquire telic and agentive roles of target nouns automatically. Telic and agentive roles are constituents of qualia structure of generative lexicon introduced by Pustejovsky. They are a type of lexical knowledge that describes the purpose and function of the target concepts, and the event related to the emergence and origin of the target concepts. They are very useful resources for semantic interpretation and information retrieval. In previous work, although telic and agentive roles are annotated by a scale similar to the Likert scale, the problem is treated as a binary classification task and the ranked values are not fully utilized. Furthermore, there is no work on acquiring qualia structures in Japanese. In order to make better use of the scale annotation, we propose a method to directly use the scale data to train a machinelearning based ranker to acquire qualia structure in Japanese. In our experiment, we evaluate the acquisition task with a rank correlation and show the effectiveness of using learning to rank techniques. Keywords: knowledge acquisition, world knowledge, generative lexicon, qualia structure, telic role, agentive role, learning to rank Master s Thesis, Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-MT1051071, March 16, 2012. ii

1. 1 1.1.................................. 1 1.2.............................. 2 2. 3 2.1................................. 3 2.2................................ 4 2.3................................ 4 2.4............................. 5 2.5 A B...... 6 3. 9 4. 11 4.1................... 11 4.1.1................... 11 4.1.2 NTT..................... 11 4.1.3.................... 12 4.2.................. 12 4.3.................. 13 4.4 /............ 15 5. / 17 5.1................................ 17 5.2................................ 17 5.3................. 22 5.4 /.................... 24 5.5.................. 27 6. 28 iii

29 30 iv

1....................... 12 2.................. 14 3.................. 14 4................. 19 5................. 19 6........... 23 7........... 23 8 7 26 9 7 26 1............................ 15 2............. 20 3... 20 4............. 21 5... 21 v

1. 1.1 WordNet EDR FrameNet Web Wikipedia [1] [2] Pustejovsky [3] 4 4 Pustejovsky 1

A B [4] [3] 1.2 Web [5, 6, 7] [7] [5, 6] / 0 10 2 / 2 3 4 / 5 2

2. Pustejovsky The Generative Lexicon [3] 4 (type coersion) (co-composition) (selective binding) 4 (argument structure) (event structure) (qualia structure) 4 (lexical inheritance structure) 2.1 4 (argument) (true argument) (default argument) (shadow argument) 3

2.2 (state) (process) (transition) < < 2.3 4 (constitutive role) (formal role) (telic role) (agentive role) 4

= 1 = x : 2 = y : 1 = v : 2 = w : = 1 = e1 : process 2 = e2 : transition = = = (x y) (y, x) = (e1, v, x) = (e2, w, x) x y x y v x e1 w x e2 2.4 5

2.5 A B A B A B A B [4] A B B x 1. x A B x A 2. x A B = [ ] 1 = x : = [ ] = x 6

= 1 = x : 2 = y : 1 = v : 2 = w : = 1 = e1 : process 2 = e2 : transition = = (x y) (y, x) = (e1, v, x) = (e2, w, x) v v = 1 = x : 2 = y : 1 = v : 2 = w : = 1 = e1 : process 2 = e2 : transition = = (x y) (y, x) = (e1, v, x) = (e2, w, x) w w 7

= = = 1 = x : 2 = y : 1 = v : 2 = w : 1 = e1 : process 2 = e2 : transition = (x y) (y, x) = (e1, v, x) = (e2, w, x) A B 4 WordNet 1 1 http://nlpwww.nict.go.jp/wn-ja/ 8

3. 1. Web (Wenderoth 2005, 2007)[5, 6] 2. (Yamada 2007)[7] Wenderoth Web 10 10 3 0: 1: 2: 3: 0 3 3 2.10 2.16 2.24 2.37 Yamada 30 50 0 10 7 10-0 9

- 3 0.479 0.605 Yamada 0 10 7 10 0 2 10

4. + 4.1 4.1.1 2 1 2010 3 CaboCha (Version: 0.60pre4, : NAIST-jdic-0.6.3) NCV NCN CF NCV 4.1.2 NTT NTT NTT ATL-J/E 1 3,000 12 30 6,000 14,000 2 http://hayashibe.jp/jdc/ 3 http://s-yata.jp/corpus/nwc2010/ 11

1 4.1.3 (Version: 0.902) 4 4,425 7,473 5 940 5 4.2 90,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 http://cl.cs.okayama-u.ac.jp/rsc/data/ 12

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (,, ) (NCV) ( ) + Jaccard Jac = = N CV N CV N CV N + CV N CV N CV + + 50 90 50 ( ) + 4.3 + 90 50 + 0 10 1 2 3 13

1000 900 telic role 800 700 Frequency 600 500 400 300 200 100 0 0 2 4 6 8 10 Score 2 4000 3500 agentive role 3000 Frequency 2500 2000 1500 1000 500 0 0 2 4 6 8 10 Score 3 14

1 10 9 8 7 6 5 4 3 2 1 0 4.4 / + + / 15

2 5 - - ( )( ) - - SVMrank 5 1. 90 2. 50 + 3. + 0-10 4. 5. + + html) 5 SVMrank Version:1.00 (http://www.cs.cornell.edu/people/tj/svm_light/svm_rank. 16

5. / 5.1 Yamada [7] m ( m m ) Rs = 1 d 2 x/e d 2 x x=1 x=1 m = 1 6 d 2 x/m(2m 2 3nm + 2n 2 1) x=1 n m d x E(x) x 2 Rs 1 0 Rs 1 5.2 ( + ) 90 + 1 20 4 5 ( + ) 7-10 0 17

LibSVM 6 (-b 1) 4, 5 N (1 N 20) 3 0.789 0.551 0.653 0.516 2 4 3 5 2, 4 SVMrank 3, 5 LibSVM 6 LibSVM Version:3.11 (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 18

1 proposed baseline 0.8 0.6 Rs 0.4 0.2 0 2 4 6 8 10 12 14 16 18 20 Top-N 4 1 proposed baseline 0.8 0.6 Rs 0.4 0.2 0 2 4 6 8 10 12 14 16 18 20 Top-N 5 19

2 1 (6.14) (5.26) (4.42) 2 (5.30) (4.90) (4.15) 3 (5.02) (4.40) (4.00) 4 (4.70) (3.71) (3.52) 5 (4.44) (3.22) (3.39) 6 (4.39) (3.19) (3.10) 7 (4.31) (3.11) (3.06) 8 (3.90) (3.10) (2.99) 9 (3.72) (3.09) (2.92) 10 (3.61) (3.07) (2.74) 3 1 (0.895) (0.885) (0.858) 2 (0.893) (0.858) (0.851) 3 (0.870) (0.855) (0.833) 4 (0.867) (0.851) (0.820) 5 (0.863) (0.823) (0.817) 6 (0.856) (0.804) (0.814) 7 (0.850) (0.804) (0.811) 8 (0.842) (0.801) (0.808) 9 (0.839) (0.776) (0.807) 10 (0.830) (0.773) (0.806) 20

4 1 (2.74) (2.76) (2.45) 2 (2.39) (2.56) (1.32) 3 (2.02) (2.34) (1.20) 4 (1.93) (2.12) (0.90) 5 (1.87) (2.09) (0.78) 6 (1.84) (1.71) (0.67) 7 (1.50) (1.64) (0.65) 8 (1.46) (1.63) (0.63) 9 (1.38) (1.52) (0.54) 10 (1.32) (1.49) (0.44) 5 1 (0.994) (0.991) (0.137) 2 (0.982) (0.961) (0.099) 3 (0.981) (0.916) (0.078) 4 (0.980) (0.900) (0.073) 5 (0.968) (0.564) (0.067) 6 (0.887) (0.298) (0.065) 7 (0.878) (0.265) (0.063) 8 (0.577) (0.250) (0.059) 9 (0.436) (0.242) (0.056) 10 (0.415) (0.229) (0.055) 21

5.3 2 1-20 6 7 ALL: 4.4 ALL-VERB: ALL ALL-NOUN: ALL ALL-VERB&NOUN: ALL 3 ALL 0.789 ALL-VERB 0.762 ALL-NOUN 0.726 ALL-VERB&NOUN 0.548 ALL 0.653 ALL-VERB 0.275 ALL-NOUN 0.673 ALL- VERB&NOUN 0.257 6, 7 (ALL-VERB&NOUN) (ALL-VERB, ALL-NOUN) (ALL-VERB&NOUN) (ALL-NOUN) (ALL-VERB) 22

1 0.8 ALL ALL-VERB ALL-NOUN ALL-VERB&NOUN 0.6 Rs 0.4 0.2 0 2 4 6 8 10 12 14 16 18 20 Top-N 6 1 0.8 ALL ALL-VERB ALL-NOUN ALL-VERB&NOUN 0.6 Rs 0.4 0.2 0 2 4 6 8 10 12 14 16 18 20 Top-N 7 23

5.4 / / + N SVMrank 2 N Top-N method SVMrank Threshold method N 7 7 8 7 9 recall = 7 7 precision = 7 Top-N method N = 20 0.758 0.549 0.637 N = 6 0.337 0.528 0.411 Threshold method 1.83 0.700 0.621 24

0.658 1.92 0.457 0.547 0.498 8, 9 Threshold method Top-N method SVMrank 25

1 Top-N method Threshold method 0.8 Precision 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Recall 8 7 1 Top-N method Threshold method 0.8 Precision 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Recall 9 7 26

5.5 27

6. 2 2 N SVMrank A B 28

29

[1],, and. Wikipedia., 16(3):3 24, 2009. [2] and.., 12(2):109 131, 2005. [3] James Pustejovsky. The Generative Lexicon. MIT Press, 1998. [4]. A B.,, 2005. [5] Philipp Cimiano and Johanna Wenderoth. Automatically learning qualia structures from the web. In Proceedings of the ACL-SIGLEX Workshop on Deep Lexical Acquisition, pages 28 37, Ann Arbor, Michigan, 2005. [6] Johanna Wenderoth. Automatic acquisition of ranked qualia structures from the web. In Proceedings of the ACL, pages 888 895, 2007. [7] Yamada Ichiro, Baldwin Timothy, Sumiyoshi Hideki, Shibata Masahiro, and Yagi Nobuyuki. Automatic acquisition of qualia structure from corpus data. IEICE Transactions on Information and Systems, 90(10):1534 1541, 2007. 30