審査委員会081214_4章まで.ppt



Similar documents
090117公聴会_提出版.ppt

教室説明会1113.ppt

研究成果報告書

untitled

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ


Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

untitled

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ


(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

燃焼圧センサ


ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について


ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

35TS.indd

橡

藤村氏(論文1).indd

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- -

第2章

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

LM35 高精度・摂氏直読温度センサIC

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

„´™Ÿ/’£flö

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

S-5.indd

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member



untitled

スペースプラズマ研究会-赤星.ppt

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

no15

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

charpter0.PDF

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:


JSME-JT

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LM3886

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

....PDF.pmd

cms.pdf


スライド タイトルなし

RT-PCR プロトコール.PDF

2017 (413812)

研究速報 JARI Research Journal バイオディーゼル燃料によるポスト新長期規制適合 エンジンの排出ガスへの影響 Effect of Biodiesel Fuel on Emissions from PNLT Diesel Engine 北村高明 *1 松浦賢 *2

Microsoft Word - TSE_15_1_5.doc

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

untitled

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

特-7.indd

2章.doc

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

untitled

LM3876

スライド 1

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

パナソニック技報


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

スライド 1

GPGPU

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

LP3470 Tiny Power On Reset Circuit (jp)

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

LM2940

Fig. 1 Experimental apparatus.

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

K02LE indd

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

VOL.39 S-3

橡A PDF

Transcription:

Presentation title 1 / 54 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA

Contents 2 / 54 1 2 NOxUrea-SCR NOx 3 4 NOx 5 NOx 6 NOx Urea-SCR 7

3 / 54 1

Background and Motivation 4 / 54 CO 2 CO 2 1.274 x 1 9 t/year 26 (CO 2 ) 1.34 x 1 9 t/year 26 19.9% Vehicles 89.7 % Cf.) http://www.jaf.or.jp/ CO 2 18% / > / > / > ( ) MiEV FCHV CO 2

Background and Motivation 5 / 54 CO 2 Combustion improvement PM emission ( 2 3 ) (NOx PM ) Aftertreatment NOx emission Fig. Conceptual figure of diesel emission standards > >DPF PM1% >NOx 8 9% NOx, NOx NOx,

Previous Studies 6 / 54 >DPF, CSF (Catalyzed Soot Filter) NO NO 2 NO 2 265 PM PM NO 2 Soot C + 2NO 2 CO 2 + 2NO >LNT, NSR (NOx ),NOx, NOx N 2 NOx NO NO 2 NO 2 NO 2 Lean operation Rich spike O 2 NO NO 2 NO 2 N 2, CO 2, H 2 O H 2, CO, HC NOx NOx storage material Pt Pt Al 2 O 3 Al 2 O 3

Previous Studies of Urea-SCR System 7 / 54 NOx reduction % 1 8 6 4 2 NOx >Urea-SCR DOC_A DOC_B DOC_C DOC_A DOC_B DOC_C Oxidation power A > B > C 2 1 15 2 25 3 35 4 45 SCR Catalyst Temperature deg. C Fig. NOx reduction and NO 2 /NOx v.s. SCR cat. Temp.* 1.5 1.5 NO 2 /NOx Johnson Matthey York (24) 3 DOC NOx ( ) NOx *SAE Paper 24-1-155 Urea-SCR (JARI Ford) Biodiesel (NREL) HC Ford (ORNL) (PSI) DPF PM NO 2 (Penn. State Univ.)

Outline of Doctor Thesis 8 / 54 NOx Urea-SCR NOx ( 2 ) ( 3 ) NOx Urea-SCR NOx NOx NOx ( 4 ) NOx ( 5 ) NOx Urea-SCR ( 6 ) NOx STAR-CD NOx NO NO 2 Pilot Post NOx NOx Urea-SCR NOx NOx NOx

9 / 54 2 NOxUrea-SCR NOx

Outline of Urea-SCR System 1 / 54 Urea-SCR? NOx Urea decomposition (NH 2 ) 2 CO HNCO + NH 3 - Pyrolysis HNCO + H 2 O NH 3 + CO 2 - Hydrolysis Overall SCR reaction 4NH 3 + 4NO + O 2 4N 2 + 6H 2 O 8NH 3 + 6NO 2 7N 2 + 12H 2 O 2NH 3 + NO + NO 2 2N 2 + 3H 2 O (1) Standard SCR reaction (2) NO 2 SCR reaction (3) Fast SCR reaction Urea-SCR NOx etc etc NOx Urea-SCR NOx NOx

Experimental Apparatus 1 - Engine Test Bench - 11 / 54 Type : 7.8 L, DOHC, DI The numbers of cylinders : In-line 6 Bore Stroke : 115 125 mm Aspiration : Turbocharged PC Radiator Dynamometer Common Rail Fuel tank A/D converter Turbocharger Engine Engine Fuel consumption meter Supply pump Urea-SCR system MEXA-91DEGR MEXA-4FT Measuring method Rotary Encoder MEXA-91DEGR Analyzing Recorder NOx Chemiluminescence CO, CO 2 Non-Dispersive Infrared Detection (NDIR) THC Flame Ionization Detection Intercooler (FID) Air MEXA-4FT Air flow meter Filter Fourier Transform Infrared spectrometer (FT-IR)

Experimental Apparatus 2 - Base Urea-SCR System - 12 / 54 Urea-SCR Function generator Urea tank (32.5 wt% urea-solution) Urea dosing control circuit Urea Injector Water jacket 2 Pump 1 Exhaust gas Pre-oxidation catalyst 3 4 5 6 7 SCR catalyst specifications Vanadium catalyst Cell density : 3 cells/inch 2 Total catalyst volume : 22.6 L (2.8 times engine swept volume) Zeolite catalyst Cell density : 4 cells/inch 2 Total catalyst volume : 22.6 L (2.8 times engine swept volume) SCR catalyst Post-oxidation catalyst catalyst

Basic performance test 1 - experimental condition - 13 / 54 Urea Injection 2 1 Sampling Points 3 4 5 6 7 Diesel oxidation catalyst Zeolite SCR catalyst Table Experimental condition Operation steady state Engine speed rpm 144 Load % 2, 4, 6, 8 Urea equivalence ratio 1. SCR catalyst Zeolite 3 Pre-oxidation catalyst 1 Post-oxidation catalyst 1 Urea equivalence ratio urea urea =1. means the precise amount of urea, which can reduce all of the NOx. NO NO 2 NO reduction by Standard SCR NO 2 reduction by NO 2 SCR NO and NO 2 reduction by Fast SCR

Basic performance test 2 - test results - 14 / 54 NOx >2% Fast SCR reaction >SCR NO 2 1 Sampling Points 7 3 4 5 6 Oxi. cat. SCR cat. NOx reduction % Zeolite catalyst : NOx reduction 1 8 6 4 2 2%Load 4%Load 6%Load 8%Load 4 5 6 7 sampling point NO, NO 2 ppm 25 2 15 1 5 Zeolite catalyst : 2% Load SCR Catalyst temp. 457 K (184 ) Fast SCR NO:NO 2 =1:1 NO NO 2 Standard SCR 1 2 3 4 5 6 7 sampling point NOx NO 2

Experimental Apparatus 3 - Modified System Layout - 15 / 54 Exhaust gas Bypass line Catalyst line 2 1 Valve Modification 1. Pre-oxidation catalyst 2. Bypass line 3. Two valves Pre-oxidation catalyst ( 2) 3 4 5 6 7 NO 2 NO 2

Definition of NO 2 /NOx 16 / 54 NOx NO 2 /NOx NOx 2 /NOx Exhaust gas NO 2 /NOx = NO 2 NO + NO 2 NOx NO, NO 2, N 2 O trace quantity NO NO 2 Load % NO 2 /NOx with Pre-Oxi. cat. w/o Pre-Oxi. cat. 2.143.131 4.536.71 6.574.23 8.374.2 NO 1% NO 2 % - NO 2 /NOx =. NO 5% NO 2 5% - NO 2 /NOx =.5 NO % NO 2 1% - NO 2 /NOx = 1.

Effect of NO 2 /NOx on NOx Reduction (1) 17 / 54 NOxUrea-SCR NOx SCR NO 2 /NOx NOx Table Experimental condition Urea Injection bypass line catalyst line 3 4 5 6 7 Zeolite Oxi. cat. SCR cat. Operation steady state Engine speed rpm 144 Urea equivalence ratio 1. SCR catalyst temp. K 45, 5 NO 2 /NOx 45 K.1,.2,.29,.42 5 K.1,.27,.5 SCR catalyst Zeolite x 3

Effect of NO 2 /NOx on NOx Reduction (2) NOx 18 / 54 Conventional SCR system Modified SCR system 3 4 5 6 7 Normalized NOx emission % 1 8 6 4 2 NOx reduction performance Catalyst temperature : 45 K NOx reduction 43.% 92.6% 6.1% 91.8% 1 13 S. P. 4 S. P. 7 1 21 Normalized NOx emission % 1 8 6 4 2 NOx reduction performance Catalyst temperature : 5 K NOx reduction 72.7% 97.4% 9.6% 99.4% 1 1 S. P. 4 S. P. 7 NO 2 /NOx =.14.42 NO 2 /NOx =.35.5 1 6 NOx NOx 6 21 %

Effect of Catalyst Composition on NOx Reduction 19 / 54 NOx NOx (V 2 O 5 ) Table Experimental condition Urea Injection bypass line catalyst line 3 4 5 6 7 Vanadium SCR cat. Zeolite SCR cat. Operation steady state Engine speed rpm 144 Urea equivalence ratio 1. SCR catalyst temp. K 55 NO 2 /NOx Va..1,.2,.3,.4,.5,.59,.65 Ze..2,.25,.49,.69 SCR catalyst Vanadium x 3, or Zeolite x 3 2 (Slide No.9 ) 3 cpsi, 4 cpsi

Effect of Catalyst Composition on NOx Reduction 2 / 54 NOx 3 5 6 4 7 1 Vanadium catalyst SCR Cat. temp. 55 K (277 ) 1 Zeolite catalyst SCR Cat. temp. 55 K (277 ) NOx reduction % 8 6 4 2 Sampling point No..2.4.6.8 1 NO2/NOx 4 5 6 7 NOx reduction % 8 6 4 2.2.4.6.8 1 NO2/NOx Standard SCR reactionno 2 SCR reaction Fast SCR reaction Urea-SCR

Summary of Section II 21 / 54 6 7.8L NOx Urea-SCR NOx NOx Urea-SCR NOx NO NO 2 Fast SCR reaction 2 NO 2 /NOx.5 NOx Urea-SCR NOx 3 Fast SCR reaction NO Standard SCR NO 2 NO 2 SCR reaction NO 2 Fast SCR reaction 45K(177 ) NOx 1/5

22 / 54 3

Outline of Diesel Combustion Modeling 23 / 54 Physical process > > NOx PM Coupling Chemical process RH QOOH > R OOQOOH > ROO HOOQ OOH HOOQ O + OH R: Alkyl radical NOx

Reaction Scheme - Outline 24 / 54 CFD STAR-CD v3.26 Complex Chemistry Module n-heptane reaction scheme* N series reactions Parameter modification Extended Zel dovich mechanism, Prompt NO, NO via N 2 O, NO 2 formation Species : 33 Elementary reactions : 66 CPU time: Approximately 54 hours for basic conditions. Machine spec. : Intel Core 2 Duo processor 2.4 GHz 2GB Memory (single core calculation) *A. Patel et al., Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations, SAE Paper 24-1-558 (24).

Engine Specifications and Calculation Grids 25 / 54 Table Engine specifications Engine type 4-cycle, 2.2L, DOHC, In-line 4 cylinders, DI Bore Stroke 86 mm 96 mm Top clearance Con-rod length.98 mm 147.5 mm Compression ratio 15.8 Calculation grids Fixed line The number of cells 5464 at BDC timing 2344 at TDC timing

Calculation Models Used in This Study 26 / 54 Table Applied physical models Turbulence model Breakup model Wall impingement model Atomization model NOx model Turbulent chemistry interaction model RNG k-epsiron model KH-RT model sb=.61, b1=15., ctau=1. crt=.1, We l =1., cb=17.5 Bai model Reitz-Diwarkar model Extended Zel dovich N 2 O, NO 2 reaction Kong model C mix =.1* *Adjusted as a fitting parameter

Reaction Scheme Ignition Delay Test 27 / 54 ignition delay ms 1 1 1.1.1 P = 1.3 MPa 1. LLNL scheme ERC scheme.7.9 1.1 1.3 1.5 1.7 1/K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, 52 reactions This study : 33 species, 66 reactions Pressure MPa 5 4 3 Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme 2 EGR ratio: 19.1% -1 1 2 3 Crank angle deg. ATDC

Reaction Scheme Ignition Delay Test n-heptane 28 / 54 C 7 H 16 + O 2 = C 7 H 15-2 + HO 2 C 7 H 16 + HO 2 = C 7 H 15-2 + H 2 O 2 Fuel RH R H-atom abstraction O 2 addition ROO O 2 addition C 7 H 15-2 + O 2 = C 7 H 15 O 2 C 7 H 15 O 2 + O 2 = C 7 KET12 + OH C 7 KET12 = C 5 H 11 CO + CH 2 O + OH isomerization QOOH OOQOOH HOOQ OOH CH 3, C 2 H 5 Methyl radical, Ethyl radical isomerization chain branching NTC HOOQ O + OH C 7 H 15-2 = C 2 H 5 + C 2 H 4 + C 3 H 6 R Alkyl radical OQ O + OH

Arrhenius parameter modification 29 / 54 Arrhenius Equation: k=at n exp(-e/rt) Elementary reaction A ERC mech. This study C 7 H 16 + HO 2 = C 7 H 15-2 + H 2 O 2 1.65E+13 6.6E+13 C 7 H 15 + O 2 = C 7 H 15-2 + HO 2 2.E+15 8.E+15 C 7 H 15-2 + O 2 = C 7 H 15 O 2 1.56E+12 6.24E+12 C 7 H 15 O 2 + O 2 = C 7 KET12 + OH 4.5E+14 1.8E+15 C 7 KET12 = C 5 H 11 CO + CH 2 O + OH 9.53E+14 3.81E+15 C 7 H 15-2 = C 2 H 5 + C 2 H 4 + C 3 H 6 7.5E+14 1.25E+15 H + O 2 + M = HO 2 + M 3.6E+13 7.2E+17 H 2 O 2 + M = OH + OH + M 1.E+16 2.E+16 OH + H 2 = H 2 O + H 1.17E+9 2.34E+9 A 2-4

Reaction Scheme Ignition Delay Test 3 / 54 ignition delay ms 1 1 1.1.1 P = 1.3 MPa 1. LLNL scheme ERC scheme Applied scheme.7.9 1.1 1.3 1.5 1.7 1/K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, 52 reactions This study : 33 species, 66 reactions Pressure MPa 5 4 Peak Pressure timing.1 ms Pressure rise.1 ms Peak Pressure 3% 3 Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme Applied ERC scheme scheme EGR ratio: 19.1% 2-1 1 2 3 Crank angle deg. ATDC

Calculation Conditions for Validation 31 / 54 Parameter : Fuel Injection Timing Engine speed rpm 2 Intake pressure kpa 13 ( 1 in Exp.) Intake temperature K 33.15* ( 1.5 in Exp.) Injection timing deg. ATDC -5, -2,, 2 Injection quantity mm 3 /st 2 EGR ratio % Intake O 2 concentration vol. % 2.9 Parameter : EGR Ratio (Intake O 2 concentration) Engine speed rpm 2 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake pressure kpa 13 13 11 97 Intake temperature K 33.4* 327.5 336.2 343.7 EGR ratio % 27.8 3.2 32.5 Intake O 2 concentration vol. % 2.9 17.2 16.2 15.3 *Heat transfer (+1-15 K) between intake gas and cylinder wall is assumed in calculation

Calculation Results - Pressure and Heat Release - 32 / 54 Cylinder pressure MPa 8 6 4 2 Parameter : Fuel Injection Timing Exp. Cal. Fuel injection timing -5 deg. ATDC -2 deg. ATDC TDC 2 deg. ATDC 4 3 2 1 Heat release J/deg. CA Cylinder pressure MPa 8 6 4 2 Parameter : EGR Ratio (Intake O 2 concentration) Exp. Cal. EGR ratio.4% 27.8% 3.2% 32.5% 4 3 2 1 Heat release J/deg. CA -2-2 -1 1 2 3 4 Crank angle deg. ATDC -2-2 -1 1 2 3 4 Crank angle deg. ATDC 8

Calculation Results - NOx (NO, NO 2 ) Emission - NOx 2 33 / 54 Parameter : Fuel Injection Timing Parameter : EGR Ratio (Intake O 2 concentration) NOx emission ppm 1 8 6 4 2 NO Exp. Cal. NO 2 Exp. Cal. -5-2 (TDC) 2 Fuel injection timing deg. ATDC 4 3 2 1 NO 2 emission ppm NOx emission ppm 7 4 65 35 3 25 2 15 1 5 NO NO 2 Exp. Cal. Exp. Cal. Exp. 7. Cal. 69.7 15.3 16.2 17.2 2.9 O 2 concentration vol% 32.5 3.2 27.8. EGR ratio % 2 16 12 8 4 NO 2 emission ppm EGR NOx NOx 2

Calculation Results - NO 2 /NOx Prediction - 34 / 54 NO 2 /NOx NO 2 4 4 16 NO 2 /NO NO 2 emission Calculated NO 2 /NOx.5.4.3.2.1 Oxygen concentration vol% 2.9 17.2 16.2 15.3 Injection timing deg. ATDC -5-2 2 15%.1.2.3.4.5 Measured NO 2 /NOx Calculated NO 2 emission ppm 15 1 5 Oxygen concentration vol% 2.9 17.2 16.2 15.3 Injection timing deg. ATDC -5-2 2 5 1 15 Measured NO 2 emission ppm NO 2 /NOx NO 2 15% NO 2 /NOx

Summary of Section III NOx n-heptane.1ms 3%.1ms EGR EGR NOx NOx EGR NOx NO 2 /NOx 35 / 54

36 / 54 4 NOx

Outline of Supercharge with EGR 37 / 54 EGR EGR line VNT/VGT turbocharger Fig. Diesel engine system Common-rail fuel injection system EGR EGR NOx PM >EGR >EGR PM NOx > EGR NOx NOx NO 2 /NOx

Analysis Method of EGR Mechanism 38 / 54 EGR NOx 2NOx Inert O 2 EGR O 2 Inert O 2 Inert O 2 > > Inert O 2 2

Calculation Conditions - EGR Mechanism - 39 / 54 Table Calculation conditions (Operating conditions) Engine speed rpm 2 Intake pressure kpa 1 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake temperature K 344.7 Table Calculation conditions (In-cylinder gas components) Case A B C O 2 vol% 21. 19.3, 17.7, 16. N 2 vol% 79. 78.7, 78.3, 78. H 2 O, CO 2 vol%. 1., 2., 3.. Inert O 2 vol%.. 2., 4., 6. EGR Case A EGR CO 2 H 2 O Case B Inert O 2 Case C

Calculation results - EGR mechanism - 4 / 54 Average in-cylinder temp. (-5 15 deg. ATDC) Temperature K 96 94 Inert_O2 EGR 92 Dilution gas % 9 2.% 4.% 6.% 88-5 5 1 15 Crank angle deg. ATDC Temperature K Average in-cylinder temp. (1 3 deg. ATDC) 17 EGR Inert_O2 16 15 14 1 15 2 25 3 Crank angle deg. ATDC Inert O 2 Case(A) Case (B) (C)

Calculation Results - EGR Mechanism - 41 / 54 Cylinder pressure MPa 6 4 2 In-cylinder Pressure and HRR Dilution gas w/o EGR CO2, H2O Inert_O2 Dilution gas % 2.% 4.% 6.% 5 1 15 2 25 3 Crank angle deg. ATDC NOx 4 3 2 1 Heat release J/deg. CA NO, NO2 ppm 1 8 6 4 2 Case NO NOx 2 /NOx emissions.93.12.15.18.2.22.23 821.89 Inert O 2 45.21 346.94 197.21 13.69 NO NO2 EGR(CO 2,H 2 O) 62.83 31.2 Inert O2 EGR Inert O2 EGR Inert O2 EGR. 2. 4. 6. Dilution gas vol% A C B C B C B 2 Case A C ( ) Case B C () EGR NOx EGR NOx 2 /NOx

In-cylinder Behaviour of NO and Gas Temp. NO (movie) 1 9 deg. ATDC (1 deg. CA/sec) Case A Case B* Case C* 42 / 54 Temperature K Min. 4 Max. 25 NO mass fraction Min.. Max..8 *Dilution gas amount of Case B and C is 4.%

NO and Temperature Distribution 43 / 54 NO Temperature K 4 25 NO mass fraction..8 (A) w/o EGR (B) EGR (C) Inert O 2 (A) w/o EGR (B) EGR (C) Inert O 2 14 deg. ATDC 14 deg. ATDC 18 deg. ATDC 18 deg. ATDC 26 deg. ATDC 26 deg. ATDC NO NO NO

Sensitivity Analysis - Analysis method - 44 / 54 Typical heat release rate curve D > (B, C, D, E) (B, C, D) Heat release > C SOI A B E A:Ignition delay (Cool flame) B:Ignition delay (Hot flame) C:Max. heat release D:Max. heat release timing E:Combustion duration 7. J/deg. CA Crank angle 5

Sensitivity Analysis - Analysis method - 45 / 54 Cylinder pressure MPa base 1 kpa base 2, +2, +4, +6, +8, +1 kpa In-cylinder pressure and heat release 1 4 8 6 4 2 +2kPa +4kPa +6kPa +8kPa +1kPa base -2kPa -2-2 -1 1 2 3 4 Crank angle deg. ATDC 3 2 1 Heat release J/deg Base operating conditions Engine speed : 2 rpm EGR ratio. : 19.1 % Fuel quantity : 2 mm 3 /st Fuel injection timing : TDC (single)

Sensitivity analysis results Parameter : Intake pressure 46 / 54 In-cylinder Pressure and HRR Cylinder pressure MPa Relative sensitivity 1 8 6 4 2 +1kPa +8kPa +6kPa +4kPa +2kPa base -2kPa -2 5 1 15 2 25 3 Crank angle deg. ATDC 2.5 2 1.5 1.5 base 4 3 2 1 C: Maximum heat release rate Heat release J/deg -2 2 4 6 8 1 Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 A: Cool flame timing 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base) D: Timing of maximum H. R. R. 2.5 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 B: Hot flame timing 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base) 2.5 E: Combustion duration 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base)

Ignition timing and intake pressure - 47 / 54 Cylinder pressure MPa 1 8 6 4 2 In-cylinder Pressure and HRR -2-2 -1 1 2 3 4 Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa base -2kPa fuel O2 product 4 3 2 1 Heat release J/deg 5 deg ATDC Base 912.9 K Base+4 kpa 918.5 K d[ fuel] β = [ ][ ] dt α + k fuel O2 [ O2 ] O 2 molar concentration mol/cm 3 Base+8 kpa 922.9 K

Numerical Analysis of Supercharge with EGR Intake pressure / O 2 vol% : base 1 kpa / 18.5% EGR base 2kPa / 23.4%, +2kPa / 15.3%, +4kPa / 13.%, +6kPa / 11.4%, +8kPa / 1.1%, +1 kpa / 9.% 48 / 54 Cylinder pressure MPa 1 8 6 4 2 EGR In-cylinder Pressure and HRR -2-2 -1 1 2 3 4 Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa -2kPa base 5 4 3 2 1 Heat release J/deg.

Sensitivity analysis results Parameter : Intake pressure 49 / 54 Cylinder pressure MPa In-cylinder Pressure and HRR Relative sensitivity 1 8 6 4 2 +2kPa +4kPa +6kPa +8kPa +1kPa -2kPa base -2 5 1 15 2 25 3 Crank angle deg. ATDC 5 4 3 2 1 C: Maximum heat release rate 2.5 2 1.5 1.5 base -2 2 4 6 8 1 Initial pressure kpa (v.s. base) Heat release J/deg Relative sensitivity Relative sensitivity 2.5 2 1.5 1.5 A: Cool flame timing base -2 2 4 6 8 1 Initial pressure kpa (v.s. base) D: Timing of maximum H. R. R. 2.5 2 1.5 1.5 base -2 2 4 6 8 1 Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 B: Hot flame timing 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base) 2.5 E: Combustion duration 2 base 1.5 1.5-2 2 4 6 8 1 Initial pressure kpa (v.s. base) C, E O 2 B, D

Calculation conditions - EGR and supercharge - 5 / 54 NOx emission ppm NOx emission ppm NOx NOx 2 /NOx Parameter: Intake temp. 25 2 15 1 5 NOx NO 2 /NOx -4-3 -2-1 + 1 + 2 + 3 + 4 Intake temperature vs. base Parameter: O 2 concentration 1 4 1 3 1 2 1 1 1 1-1 23 22 21 2 19 18 17 16 15 14 Oxygen concentration vol.% 1.8.6.4.2 1.8.6.4.2 NO 2 /NOx NO 2 /NOx Parameter: Intake pres. NOx emission ppm 2 15 1 5-2 2 4 6 8 1 Intake pressure kpa (gage) 1.8.6.4.2 Parameter: Intake pres. (P O2 : const) NOx emission ppm 1 4 1 3 1 2 1 1 1 1-1 -2 2 4 6 8 1 Intake pressure kpa (gage) 1.8.6.4.2 NO 2 /NOx NO 2 /NOx

Calculation conditions - EGR and supercharge - 51 / 54 EGR EGR NOx EGR Table Calculation and experimental conditions Engine speed rpm 2 Intake temperature K 353.15 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake O 2 concentration vol% 2.9 16.2 EGR ratio % 3. 35.9 Intake pressure kpa 1 1 12 Case name A B C Exp. or Cal. Cal. Exp.,Cal. Exp., Cal. w/o EGR w/o Supercharge with EGR with Supercharge

Calculation results - EGR and supercharge - 52 / 54 EGR NOx Cylinder pressure MPa 8 6 4 2 In-cylinder Pressure and HRR Engine speed: 2 rpm 2 mm 3 /st, single Injection timing: TDC NA, with EGR 1 kpa, O 2 16.2 vol% Supercharge with EGR 12 kpa, O 2 16.2 vol% Exp. Cal. NA, w/o EGR 1 kpa, O 2 2.9% -2-2 -1 1 2 3 4 Crank angle deg. ATDC 4 3 2 1 Heat release J/deg. CA NO, NO2 ppm NOx emission 1 kpa O 2 2.9 % 1 8 6 4 2 1 Exp 143 Cal NO 1 Intake pressure kpa Exp NO2 Cal 2 821.9 5.34 1 kpa O 2 16.2 % NOx g/kwh 83.3 12 kpa O 2 16.2 %.77.421.88.555 15 12 2.9 16.2 Intake oxygen concentration vol% Cal 13. EGR NOx 85% NOx 2 /NOx [.119.193] [31 289 g/kwh]

Summary of Section IV 53 / 54 NOx EGR NOx NOx EGR NOx EGR NOx NO NOx NO 2 /NOx NOx NO EGR NOx NO EGR EGR NOx NOx

54 / 54 End