i GPS ( ) POI(Place Of Interest)



Similar documents
TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

1 1 tf-idf tf-idf i

3_23.dvi

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

7,, i

<95DB8C9288E397C389C88A E696E6462>

soturon.dvi

Web Web Web Web Web, i

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

IT,, i

4.1 % 7.5 %

Web Web Web Web i

kut-paper-template.dvi


RTM RTM Risk terrain terrain RTM RTM 48

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

Sobel Canny i

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

WASEDA RILAS JOURNAL

Web Web ID Web 16 Web Web i

28 TCG SURF Card recognition using SURF in TCG play video

29 Short-time prediction of time series data for binary option trade

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

,,,,., C Java,,.,,.,., ,,.,, i


大学における原価計算教育の現状と課題

P2P P2P Winny 3 P2P P2P 1 P2P, i

23 The Study of support narrowing down goods on electronic commerce sites

thesis.dvi

,,.,.,,.,.,.,.,,.,..,,,, i

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

udc-2.dvi

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

24 Region-Based Image Retrieval using Fuzzy Clustering

浜松医科大学紀要

WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

GPGPU

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

千葉県における温泉地の地域的展開

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

06’ÓŠ¹/ŒØŒì

28 Horizontal angle correction using straight line detection in an equirectangular image

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

SNS GIS Abstract The Tourism-based Country Promotion Basic Act was enacted in Japan over a decade ago. Tourism is expected to be the primary contribut

29 jjencode JavaScript

untitled

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

2 ( ) i

untitled

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

P2P Web Proxy P2P Web Proxy P2P P2P Web Proxy P2P Web Proxy Web P2P WebProxy i

先端社会研究 ★5★号/4.山崎

16_.....E...._.I.v2006

untitled

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

II

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i


谷口/谷口

TA3-4 31st Fuzzy System Symposium (Chofu, September 2-4, 2015) Interactive Recommendation System LeonardoKen Orihara, 1 Tomonori Hashiyama, 1

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

HP cafe HP of A A B of C C Map on N th Floor coupon A cafe coupon B Poster A Poster A Poster B Poster B Case 1 Show HP of each company on a user scree

Web Web Web Web 1 1,,,,,, Web, Web - i -

卒業論文2.dvi

finalrep.dvi

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

_念3)医療2009_夏.indd

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

, i

DEIM Forum 2010 A3-3 Web Web Web Web Web. Web Abstract Web-page R

25 Removal of the fricative sounds that occur in the electronic stethoscope

2013 Future University Hakodate 2013 System Information Science Practice Group Report biblive : Project Name biblive : Recording and sharing experienc

DEIM Forum 2009 E

( )

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

【生】④木原資裕先生【本文】/【生】④木原資裕先生【本文】

22 Google Trends Estimation of Stock Dealing Timing using Google Trends

2

OJT Planned Happenstance



2 1 ( ) 2 ( ) i

Web Basic Web SAS-2 Web SAS-2 i

PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

評論・社会科学 84号(よこ)(P)/3.金子


1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

) ,

Core Ethics Vol.

johnny-paper2nd.dvi

<30372D985F95B62D8E52967B8C4F8E7190E690B62E706466>


IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

Transcription:

25 2 1

i GPS ( ) POI(Place Of Interest)

ii POI Mean-Shift Web Web (1) (2) POI (3) POI 2011 1 12 12 2011 12 7 4

Modeling tourist activity via probe-car data and spot similarity Kazunori TAMURA Abstract The number of personal tourists, who freely decide on visiting spot, is increasing in recent years. Conventionally, the questionnaire method in which a tourist records his/her touristic activities based on his/her memory has been used for survey and analysis of the personal tourism. However, tourists cannot remember all of their activities precisely and it is not realistic to collect a lot of data by this method. On the other hand, a large amount of probe-car data using GPS has been stored. Probe-car data provides cars location points, speeds and so on. Since probe-car data is automatically stored by car navigation system, it has an advantage that data with high objectivity is able to be collected at low cost compared with the questionnaire method. Thus, we aim at modeling tourists activities using probe-car data of users who use cars for sightseeing. The tourist activity model helps in comprehending which tourism spot tends to be visited by tourists. Furthermore, it can be used for the spot recommendation system by predicting the tourism spots where a user will visit next. We grasp tourists activities as spot transitions and build the model which can predict the user s next transition. In previous research related to the tourist activity modeling, tourists activities are modeled using first-order Markov model (we simply call it Markov model). Markov model assumes that the next visiting spot depends only on the current spot. However, there is a sparsity problem in Markov model, that is, it is difficult to predict the next transition from a minor spot where a few users visit. In this paper, we assume that users who are in similar spots tend to move to the same spot, and cope with the sparsity problem in Markov model using spot similarities. Probe-car data, in this paper, consists of two kinds of data. One is the stop location data, which records when and where a car stops more than 10 minutes. A user s stop location data ordered by time can be regarded as his/her location history of the tour. The other is the place of interest(poi) data, which records the POI name which a user set as his/her destination. In this paper, we relate the stop locations to spots and calculate spot similarities using the POI data to model tourists activities. Details iii

iv of the proposed method are as follows. First, areas where many users stop are extracted as spots in order to model tourists activities as spot transitions. We cluster the stop location data by the mean shift procedure and define the spots each of which corresponds to a cluster. Once we have extracted a set of spots, each location history, which is a sequence of locations, is converted to a sequence of spots. Next, spot similarities are calculated based on external information from the Web. Using external data acquired from the Web, we can (1) get fine features of spots, (2) get features which reflect impression of the POIs people generally have, and (3) relate POIs to sightseeing areas in the real world. Finally, the scores of transitions from a user s current spot to another spot are calculated. Our model predicts that a user will move to the largest score spot. Conventional Markov model uses data of transitions only from the current spot. In contrast, our model uses data of transitions even from other spots which are similar to the current spot. This enables us to predict the next spot properly even if the user is in a minor spot at the time. To examine the effectiveness of the proposed method, we conducted an experiment, in which we evaluated the accuracy of the transition prediction by our model. We use the probe-car data in Kyoto in 2011 stored by car navigation systems produced by Pioneer. We filtered out tourists from all the car navigation users by collecting data of users who live in outside of Kyoto prefecture and who have stopped in Kyoto city area on at most 7 days. Applying proposed method to 4 data sets, which vary in parameters of spot extraction, the prediction accuracies for all 4 data sets were higher than ones with Markov model. This result shows that our model describes tourists activities better than the conventional method.

1 1 2 3 2.1........................................ 3 2.2........................................ 5 2.3.......................................... 6 2.4..................... 6 3 7 3.1....................................... 7 3.2..................................... 9 3.3.............................. 10 3.4.............. 10 3.4.1............................... 12 3.4.2................................. 13 3.4.3 tf-idf........................ 13 3.4.4........................ 14 3.4.5....................... 14 3.5............ 15 4 15 4.1....................................... 16 4.1.1............................... 16 4.1.2............................. 17 4.1.3............. 17 4.1.4.......................... 17 4.2................... 19 4.3..................................... 20 4.4.............................. 22

5 23 24 25

1 [1] GPS 1

POI(Place of Interest) POI POI POI ID POI Ashbrook [2] [2] ( ) 1 1 2

Web 2 3 4 5 2 2.1 10 0km/h 10 POI(Place of Interest) POI POI POI POI 1 POI 3

ƒ WK/ µµ WK/ WK/ ƒ WK/ 1: POI POI POI POI POI Web POI POI 2 POI POI POI POI POI 4

U u h u (h u 1,, hu h u ) hu H h u i u i h u i = (l u i, pu i ) lu i p u i POI p u i H POI P H S {s i } s t s t+1 s i H li u li u 1 2.2 GPS Flickr Foursquare SNS [3] Flickr Bao[4] Foursquare GPS Web GPS Zheng [5] [6] Zheng [5] POI yellow page [6] Wikipedia 5

2.3 SNS [3, 4] SNS 1 [3, 4] Zheng [5] POI POI POI POI POI POI Bao [4] Foursquare POI POI Foursquare 2.4 6

1 1 Pr(s t+1 s t, s t 1,, s 1 ) = Pr(s t+1 s t ) (1) Pr(s t+1 s t ) Pr(s t+1 s t ) = N(s t, s t+1 ) N(s t ) (2) N(s t, s t+1 ) s t s t+1 N(s t ) s t s t P(s t+1 s t ) s t+1 s t P(s t+1 s t ) s t s t s t s t s t P(s i s t ) P(s i s t) (1 i S ) 3.4 3 3.1 2 4 2 7

H m ij 2: 1. H S S 1 3.2 2. 2 h u i s u i s u i 2 3.3 3. 8

Web 3 3.4 4. 2 3 s t s t+1 4 3.5 3.2 POI POI POI POI POI POI H h u i li u Mean-Shift [7] Mean-Shift 2 1 1 Mean-Shift [3, 8] Mean-Shift bandwidth Mean-Shift bandwidth bandwidth 9

Mean-Shift 3.3 h u i h u i = (l u i, pu i ) h u i = (s u i, pu i ) su i h u i h u = (h u 1,, h u h u ), h u H 3.4 c s = (c s 1,, cs P ) cs i s POI p i ( P) c s i = # { (u, k) s u k = s, pu k = p } i (3) # c s POI p i s s POI p i POI p i POI p i c s i s POI p i s POI c s i s 10

POI c s i c s c s c s c s c s POI POI c s i 0 POI c s i 0 0 POI POI 2.3 POI POI Web POI Web POI (POI ) POI c s Web POI Web Web POI 1. POI 11

POI 2. POI 3. POI 3 POI Web POI Web POI POI Web Web Web POI 1. POI Web 2. 3. tf-idf POI 4. POI c s 5. 3.4.1 POI Web Web POI POI POI POI Web Web 12

Web Web δ Web POI POI p i POI d i 1 1 URL Web 3.4.2 POI MeCab[9] Web T POI d i t j ( T) n i j 3.4.3 tf-idf POI tf-idf [10] POI tf-idf 1 tf-idf tf-idf POI d i t j w i j w i j = t f i j id f j (4) ( t f i j = log 1 + n ) i j k n ik id f j = log P # { d d t j } # { d d t j } t j POI POI POI POI p i POI v p i POI (5) (6) 13

3 単 語 p v 1 p2 v 寺 0.1 0.2 0.03 映 画 0.0 0.0 0.1 美 術 0.02 0.01 0.02 電 車 0.001 0.05 0.08. pp v 3: POI 3.4.4 POI Web POI c s POI s i v s i (7) POI 3.4.5 v s i = j c s i j v p j j c s i j s i s j σ i j σ i j (8) (7) σ i j = cos(v s i, v s j ) (8) cos(u, v) cos(u, v) = u v u v (9) 14

3.5 2.4 (2) Pr(s t+1 s t ) (2) s t+1 N(s t, s t+1 ) m i j N(s i, s j ) m i j s i s j s i m i j s j (10) m i j s i m i j s j m i j = σ α ik m k j (10) k α 0 (10) m i j s j s i σ ii = 1 m i j = m i j + σ α ik m k j (11) (11) m i j 1 2 α m k j (k i) α m k j (k i) s i j m i j (11) k i 4 15

4.1 4.1.1 3 0km/h 1 ID 2011 1 12 12 2011 12 7 17172 1 2 4 2.73 1 2500 2000 ユー 1500 ザー 1000 数 500 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 停 車 数 4: 16

4.1.2 POI POI POI ID POI POI ID 2011 2583 POI 860 4.1.3 ID ID ID ID POI li u,pu i H 10 5 4.1.4 3.2 Mean-Shift POI τ bandwidth τ 2 4 bandwidth Mean-Shift bandwidth=0.0003 bandwidth=0.0010 2 0.0001 10m bandwidth 0.0003,0.0010 30m,100m 17

τ Mean-Shift POI τ τ = 0 τ = 5 2 τ c s τ = 0, τ = 5 bandwidth 5 τ = 0 bandwidth τ = 5 bandwidth τ bandwidth τ {0, 5} bandwidth {0.0003, 0.0010} 4 3.3 H 3.4 σ i j POI Web σ 100 Yahoo! 2 2 1 1 1 4 (a),(b),(c),(d) ス ポ ッ ト 数 1800 1600 1400 1200 1000 800 600 400 200 0 τ=0 τ=5 0 0.0005 0.001 0.0015 0.002 bandwidth 5: 18

bandwidth τ (a) 0.0003 0 956 1606 2.53 (b) 0.0003 5 82 554 2.38 (c) 0.0010 0 569 2010 2.57 (d) 0.0010 5 101 963 2.46 1: 4.2 Leave-one-out Leaveone-out U U 1 1 U 1 2 CMC CMC n, 2 s i s i s j m i j s j 3 4 CMC 6 α 0.5,1.0,1.5,2.0,2.5 19

6 m i j α (a),(b),(c) 1.5 (d) 2.0 (d) bandwidth τ (d) α = 2.0 4.3 Web 2 ( ) s i s j d i j σ i j σ i j = 1 λd i j + 1 (12) λ λ = 100 20

0.2 0.18 0.16 0.14 予 測 0.12 成 0.1 功 0.08 率 0.06 提 案 手 法 0.04 マルコフ 0.02 多 項 分 布 0 1 2 3 4 5 6 7 8 9 10 順 位 予 測 成 功 率 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 提 案 手 法 マルコフ 多 項 分 布 1 2 3 4 5 6 7 8 9 10 順 位 (a) bandwidth=0.0003, τ=0 (α=1.5) (b) bandwidth=0.0003, τ=5 (α=1.5) 0.25 0.4 予 測 成 功 率 0.2 0.15 0.1 0.05 0 提 案 手 法 マルコフ 多 項 分 布 1 2 3 4 5 6 7 8 9 10 順 位 予 測 成 功 率 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 提 案 手 法 マルコフ 多 項 分 布 1 2 3 4 5 6 7 8 9 10 順 位 (c) bandwidth=0.0010, τ=0 (α=1.5) (d) bandwidth=0.0010, τ=5 (α=2.0) 6: CMC a s i a s i k u k s i 1 0 σ i j = cos(a s i, a s j ) (13) 2 4.2 7 1 21

1 2 0.2 0.18 0.16 予 0.14 測 0.12 成 0.1 功 0.08 率 0.06 提 案 手 法 0.04 距 離 0.02 停 車 ユーザー 0 1 2 3 4 5 6 7 8 9 10 順 位 (a) bandwidth=0.0003, τ=0 予 測 成 功 率 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 提 案 手 法 距 離 停 車 ユーザー 1 2 3 4 5 6 7 8 9 10 順 位 (b) bandwidth=0.0003, τ=5 7: 4.4 10 2 4 1 1 A B 2 A A B A B 22

bandwidth=0.0003, τ = 5 POI 82 50 τ τ = 8 51 τ = 8 CMC 8 0.7 0.6 予 測 成 功 率 0.5 0.4 0.3 0.2 0.1 0 手 動 マージあり 手 動 マージなし 1 2 3 4 5 6 7 8 9 10 順 位 8: CMC 5 1 23

Web Web CMC 24

[1], :, Proceedings of JSCE, Vol. 625, pp. 53 64 (1999). [2] Ashbrook, D. and Starner, T.: Using GPS to learn significant locations and predict movement across multiple users, Personal and Ubiquitous Computing, Vol. 7, No. 5, pp. 275 286 (2003). [3],,, :,,LOIS, Vol. 109, No. 450, pp. 55 60 (2010). [4] Bao, J., Zheng, Y. and Mokbel, M. F.: Location-based and Preference-Aware Recommendation Using Sparse Geo-Social Networking Data, ACM SIGSPA- TIAL GIS 2012, pp. 199 208 (2012). [5] Zheng, V. W., Zheng, Y., Xie, X. and Yang, Q.: Collaborative location and activity recommendations with GPS history data, Proceedings of the 19th international conference on World Wide Web, pp. 1029 1038 (2010). [6],, :,,CVIM, pp. 17 23 (2007). [7] Comaniciu, D. and Meer, P.: Mean Shift: A robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, pp. 603 619 (2002). [8] Crandall, D., Backstrom, L., Huttenlocher, D. and Kleinberg, J.: Mapping the World s Photos, Proceedings of the 18th international conference on World Wide Web, pp. 761 770 (2009). [9] Mecab: Yet another part-of-speech and morphological analyzer. http:// mecab.sourceforge.jp. [10] Salton, G. and Buckley, C.: Term-weighting approaches in automatic text retrieval, Information Processing & Management, Vol. 24, No. 5, pp. 513 523 (1988). 25