1 (a) (b) Fig. 1 (a) An example of an animation where a conventional elastic cuboid bounces off the floor. (b) An example of user-specified input data

Similar documents
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report Vol.2017-CG-166 No /3/13 1,a) 1,b) 1,c) 1,d) 1,e),,.,,.,,,., Shape Matching,. Ayano Kaneda 1,a) Tsukasa Fukusato 1,b)

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

3_23.dvi

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

例示ベースの弾性変形の実時間計算手法

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

0801297,繊維学会ファイバ11月号/報文-01-青山

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

Tf dvi

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

日本感性工学会論文誌

JFE.dvi

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

24 Depth scaling of binocular stereopsis by observer s own movements

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

塗装深み感の要因解析

14 2 5

27 VR Effects of the position of viewpoint on self body in VR environment

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

2 ( ) i

浜松医科大学紀要

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

_念3)医療2009_夏.indd

特-3.indd

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D


0801391,繊維学会ファイバ12月号/報文-01-西川

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

2 1 ( ) 2 ( ) i

Fig. 2 Gaussian surfaces with different standard deviations

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

1_26.dvi

The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

Windows7 OS Focus Follows Click, FFC FFC focus follows mouse, FFM Windows Macintosh FFC n n n n ms n n 4.2 2

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

Keywords: corotational method, Rigid-Bodies-Spring model, accuracy, geometrical nonlinearity

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

24 Region-Based Image Retrieval using Fuzzy Clustering

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-CG-147 No /6/22 CG,.,,.,..,.,,. Keyframe Control of Cumulus Clouds based on Computational Fluid Dy


Microsoft Word - toyoshima-deim2011.doc


Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking


空力騒音シミュレータの開発

9_18.dvi

熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61-

) ,

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

Transcription:

1,a) 1, 1,b) 1, 2,c) 1,d) 2013 4 6, 2013 6 14 Martin Martin Shape Matching Martin Shape Matching Real-Time Example-Based Elastic Deformation Yuki Koyama 1,a) Kenshi Takayama 1, 1,b) Nobuyuki Umetani 1, 2,c) Takeo Igarashi 1,d) Received: April 6, 2013, Accepted: June 14, 2013 Abstract: We present an example-based elastic deformation method that runs in real time. Example-based elastic deformation was originally presented by Martin et al., where an artist can intuitively control elastic material behaviors by simply giving example deformed poses. Their FEM-based approach is, however, computationally expensive requiring nonlinear optimization, which hinders its use in real-time applications such as games. Our contribution is to formulate an analogous concept using the shape matching framework, which is fast, robust, and easy to implement, without using nonlinear optimization. Our approach is two or three orders of magnitude faster than Martin et al. s approach while producing comparable example-based elastic deformations. Keywords: elastic simulation, shape matching dynamics, artist control 1. 1 The University of Tokyo, Bunkyo, Tokyo 113 0033, Japan 1 ETH Zürich Presently with ETH Zürich 2 Autodesk Research Presently with Autodesk Research a) koyama@is.s.u-tokyo.ac.jp b) kenshi84@gmail.com c) n.umetani@gmail.com d) takeo@acm.org [16] [17] [1] [6] Martin [7] 2012 6 Visual Computing/ CAD CAD c 2013 Information Processing Society of Japan 2316

1 (a) (b) Fig. 1 (a) An example of an animation where a conventional elastic cuboid bounces off the floor. (b) An example of user-specified input data for example-based elastic materials and a result animation of the example-based elastic cuboid generated from the input data. 1 [6] Martin Martin Shape Matching [9] Martin Shape Matching Martin Martin 2. 2.1 Shape Matching Shape Matching Müller [9] Müller FastLSM [10] Steinemann [14] Chain Shape Matching [11], [12] Shape Matching Oriented Particles [8] [3], [18] [15] Shape Matching ProcDef [5] [4] Shape Matching c 2013 Information Processing Society of Japan 2317

2.2 Martin [7] Martin Martin Schumacher [13] Schumacher 6.2 3. 2 (1) E 4.2 4.3 (2) 4.1 2 1 2 4.2 Martin Martin E E 2 2 Fig. 2 Overview of run-time operations. Here, the elastic cuboid model has its rest pose, current deformed pose, and two example poses. 4. 4.1 Shape Matching Müller [9] Shape Matching Shape Matching [5], [10] Shape Matching N Shape Matching 1 i 1 N i N i i 1-ring neighborhood [5] [10] i x 0 i, x i,m i r ( )( ) 1 A r = m i p i q T i m i q i q T i R 3 3 (1) i r i r m i [10] c 0 r = i r mixi i r mix0 i i r mi, c r = i r mi r p i = x i c r, q i = x 0 i c0 r A r S r = A T r A r R 3 3 R r = A r S 1 r i r g r,i Shape Matching g r,i = R r ( x 0 i c 0 r) + cr (2) g r,i = R r Sr ( x 0 i c 0 r) + cr (3) c 2013 Information Processing Society of Japan 2318

3 i r g r,i Shape Matching 4.3 S r Fig. 3 Our method for calclating the goal positions. In order to obtain the goal position g r,i of particle i in local region r, the rest shape of the region is appropriately deformed by the strain S r that is obtained by projection (Section 4.3) in our method, while the standard shape matching uses the undeformed rest shape as the goal shape. 3 S r R 3 3 4.2 E 4.3 Shape Matching i g i i g i = g r,i r i i x i v i v i (t + h) =v i (t)+α g i(t) x i (t) + h f ext(t) (4) h m i x i (t + h) =x i (t)+hv i (t + h) (5) h 1 α [0, 1] f ext 4.2 4.2.1 Martin Martin M M x R 3M i E i E(x) =(E T 1, ET 2,...,ET M )T R 6M x 3 3 6 6 x E(x) F R 6M 4 Martin Martin E E Fig. 4 Comparison between Martin et al. s and our approach. In Martin et al. s approach, example manifold E and the projection are nonlinearly defined. In contrast, in our approach, example manifold E can be defined as a simple linear interpolation, thus the projection can be handled easily. w 1 E(x 1 )+w 2 E(x 2 ) F { N k=0 w ke(x k )} x 0 x k k F E E x 4 4.2.2 Martin Shape Matching 3 A.1 (1) A r r S r S(x) =(S T 1, ST 2,...,ST M )T R 6M 3 3 S r 6 Shape Matching Martin c 2013 Information Processing Society of Japan 2319

{ N k=0 w ks(x k )} E E 4.3 S r S r 4 4.3 k S 0 = S(x 0 ), S k = S(x k ) E S = S(x) S E S = N k=0 w ks k N ( w k S k S 0) ( 2 S S 0) (6) k=1 w 1,w 2,...,w N w =(w 1,w 2,...,w N ) T R N, L =(S 1 S 0, S 2 S 0,...,S N S 0 ) R 6M N 5 β Fig. 5 Varying the magnitude of the example-based elastic deformation effect by changing β. 6 2 Fig. 6 A teddy bear whose local regions are divided into two separate groups at its middle. w = ( L T L ) 1 L T (S S 0 ) (7) (L T L) 1 L T w 0 =1 N k=1 w k 0 N E 3 β w 0 = w 0 +(1 β) N k=1 w k,w k = βw k(k =1, 2,,N) β 1 β =0.995 β 5 1 β 7 1 Fig. 7 Comparison between the case of using globally defined example manifold (left) and the case where each local region has its own example manifold independently (right). 4.4 Martin 6 2 6 7 1 1 c 2013 Information Processing Society of Japan 2320

情報処理学会論文誌 Vol.54 No.10 2316 2324 (Oct. 2013) 図 10 壁に激突する車のアニメーションの様子 1 つは例示形状を 与えた場合 残りの 3 つはそれぞれ異なる例示形状を与えた 図 8 2 種類の例示べース弾性体 直方体に対してねじれた形状と S 場合である 字形の例示形状をそれぞれ与えたもの を用いて生成した坂道 Fig. 10 Cars colliding against the wall. One (upper left) is のシーンにおけるアニメーションの様子 シーン全体で 2,250 simulated without any example pose, and the others 個のパーティクルを含んでおり 49 FPS で実行されている are simulated with different kinds of example poses. Fig. 8 An animation of a slope scene containing two types of example-based elastic cuboids (generated from twistshaped and S-shaped example poses) represented by 表 1 1 タイムステップあたりの計算時間 単位は ms Table 1 Timings per time step in milliseconds. 2,250 particles in total; this scene is simulated at 49 frames per second. モデル #パーティクル tsm tproj ttot 直方体 225 0.21 0.091 0.33 直方体 局所化 225 0.21 0.17 0.40 3.1 円筒 2,025 2.0 0.86 テディ 1,280 1.3 0.72 2.2 車 192 0.17 0.078 0.27 図 9 円柱型の四面体メッシュに円筒型の三角形メッシュを埋め込 んだ例示ベース弾性体のアニメーションの様子 Fig. 9 Four cylinders undergoing very different elastic deformations. 図 11 本論文でアニメーション生成のために用いた四面体メッシュ Fig. 11 Tetrahedral meshes used in this paper for generating the animations. 局所領域をそれぞれ独立なグループとした場合を表してお いた場合の計算時間の増加はわずかである また 図 11 り 前者は全体で一様に例示の効果が表れているのに対し に結果生成のために用いた四面体メッシュを示す 後者は部位によって例示の効果の表れ方が異なっている 5. 結果 図 8 図 9 図 10 に 本提案手法を用いて生成した例 6. 考察 6.1 Martin らの手法との結果の比較 図 12 に ねじれた形状を例示として与えた直方体を重 示ベース弾性体のアニメーションの例を示す これらは 力下においた場合に関する Martin らの手法と我々の手法 いずれも実時間で計算している 表 1 はそれぞれのシミュ の結果の簡単な比較を示す ただし ここではシミュレー レーションの 1 タイムステップあたりの計算時間 単位は ションやレンダリングの条件は厳密には同じでなく また ms を表しており tsm は従来の Shape Matching 法の計 有限要素法と Shape Matching 法ではシミュレーションの 算にかかった時間 tproj は例示集合への投影にかかった時 枠組みが異なるために例示ベース弾性変形の効果だけを厳 間 ttot はタイムステップ全体の計算にかかった時間を表 密に比較することが本質的に困難であるという点に注意さ している なお ここではレンダリングに要した時間は含 れたい しかしながら この比較画像からも観察できるよ んでいない 計測は Intel Core i7 M620 2.66 GHz CPU を うに 我々の手法は Martin らの手法と実質的に同様な効 搭載したデスクトップ PC で行った この表から分かると 果を生み出せていると我々は考えている また 計算コス おり 従来の Shape Matching 法に比べ 本提案手法を用 トに関しても厳密な比較が難しいものの Martin らの手法 c 2013 Information Processing Society of Japan 2321

12 Martin [7] c 2011 Association for Computing Machinery, Inc. Reprinted by permission. Fig. 12 Comparison between Martin et al. s result and ours. The left image is from Ref. [7], c 2011 Association for Computing Machinery, Inc. Reprinted by permission. 1 6.2 Schumacher Schumacher [13] Schumacher E Schumacher Shape Matching Schumacher Martin Martin Schumacher 6.3 Martin Shape Matching Shape Matching 6.4 Martin Schumacher Martin Schumacher Shape Matching 7. Shape Matching 3 Shape Matching Chain Shape Matching [11], [12] Oriented Particles [8] 2 1 Schumacher [13] Explicit Weight Control Princeton Shape Benchmark c 2013 Information Processing Society of Japan 2322

[1] Bergou, M., Mathur, S., Wardetzky, M. and Grinspun, E.: TRACKS: Toward directable thin shells, ACM Trans. Graph., Vol.26 (2007). [2] Bonet, J. and Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2 edition (2008). [3] Diziol, R., Bender, J. and Bayer, D.: Robust realtime deformation of incompressible surface meshes, Proc. 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.237 246, ACM (2011). [4] Ijiri, T., Ashihara, T., Umetani, N., Igarashi, T., Haraguchi, R., Yokota, H. and Nakazawa, K.: A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion, PLoS ONE, Vol.7, No.5, p.e36706 (2012). [5] Ijiri, T., Takayama, K., Yokota, H. and Igarashi, T.: ProcDef: Local-to-global Deformation for Skeletonfree Character Animation, Computer Graphics Forum, Vol.28, No.7, pp.1821 1828 (2009). [6] Kondo, R., Kanai, T. and Anjyo, K.-I.: Directable animation of elastic objects, Proc. 2005 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation, pp.127 134, ACM (2005). [7] Martin, S., Thomaszewski, B., Grinspun, E. and Gross, M.: Example-based elastic materials, ACM Trans. Graph., Vol.30, pp.72:1 72:8 (2011). [8] Müller, M. and Chentanez, N.: Solid simulation with oriented particles, ACM Trans. Graph., Vol.30, pp.92:1 92:10 (2011). [9] Müller, M., Heidelberger, B., Teschner, M. and Gross, M.: Meshless deformations based on shape matching, ACM Trans. Graph., Vol.24, pp.471 478 (2005). [10] Rivers, A.R. and James, D.L.: FastLSM: Fast lattice shape matching for robust real-time deformation, ACM Trans. Graph., Vol.26 (2007). [11] Rungjiratananon, W., Kanamori, Y. and Nishita, T.: Chain Shape Matching for Simulating Complex Hairstyles, Computer Graphics Forum, Vol.29, No.8, pp.2438 2446 (2010). [12] Rungjiratananon, W., Kanamori, Y., Metaaphanon, N., Bando, Y., Chen, B.-Y. and Nishita, T.: Twisting, tearing and flicking effects in string animations, Proc. 4th International Conference on Motion in Games, pp.192 203, Springer-Verlag (2011). [13] Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R. and Gross, M.: Efficient simulation of example-based materials, Proc. ACM SIG- GRAPH/Eurographics Symposium on Computer Animation, pp.1 8, Eurographics Association (2012). [14] Steinemann, D., Otaduy, M.A. and Gross, M.: Fast adaptive shape matching deformations, Proc. 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.87 94, Eurographics Association (2008). [15] Takamatsu, K. and Kanai, T.: A fast and practical method for animating particle-based viscoelastic fluids, The International Journal of Virtual Reality, Vol.10, No.1, pp.29 35 (2011). [16] Thürey, N., Keiser, R., Pauly, M. and Rüde, U.: Detail-preserving fluid control, Proc. 2006 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation, pp.7 12, Eurographics Association (2006). [17] Twigg, C.D. and James, D.L.: Backward steps in rigid body simulation, ACM Trans. Graph., Vol.27, pp.25:1 25:10 (2008). [18] Vol.40, No.4, pp.549 557 (2011). A.1 (1) A r r F r 1 r O x =(x 1,x 2,x 3 ) T u(x) O u i (x) = n=0,..., k+l+m=n Z = x u(x) = a k,l,m i x k 1x l 2x m 3 (i =1, 2, 3) (A.1) [2] u(x) a 1,0,0 1 a 0,1,0 1 a 0,0,1 1 a 1,0,0 2 a 0,1,0 2 a 0,0,1 2 a 1,0,0 3 a 0,1,0 3 a 0,0,1 3 (A.2) Z F F = I + Z 1 6 x 1 =( ɛ, 0, 0) T, x 2 =(ɛ, 0, 0) T, x 3 =(0, ɛ, 0) T, x 4 =(0,ɛ,0) T, (A.3) x 5 =(0, 0, ɛ) T, x 6 =(0, 0,ɛ) T (1) p i, q i c p i = x i + u(x i ) c, q i = x i (A.4) A (1) ( 6 )( 6 ) 1 A = p i q T i q i q T i (A.5) ( 6 )( 6 T T = I + u(x i )x i x i x i ( 6 cx i T ) 1 )( 6 ) 1 T x i x i (A.6) = I + B C (A.7) (A.1) (A.3) B c 2013 Information Processing Society of Japan 2323

B ij = a 1,0,0 i a 0,1,0 i a 0,0,1 i 6 cx T i = c + k=1 a2k+1,0,0 i ɛ 2k (j =1) + k=1 a0,2k+1,0 i ɛ 2k (j =2) + k=1 a0,0,2k+1 i ɛ 2k (j =3) 6 x T i = c0 T = 0 (A.8) (A.9) 1983 2012 Autodesk Research C = 0 ɛ 0 B C Z A F A F 3 1 CG 2 1 CAD 2000 2002 2005 2011 2007 2013 JST ERATO SIGGRAPH 1989 2012 1984 2012 ETH Zurich c 2013 Information Processing Society of Japan 2324