Web Hashtag Hashtag Twitter Hashtag Twitter Hashtag Hashtag Hashtag Twitter Hashtag Twitter Hashtag contexthashtag contexthashtag Hashtag contexthasht



Similar documents
,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

7,, i

Web Web Web Web Web, i

16_.....E...._.I.v2006

3_23.dvi

DEIM Forum 2010 A3-3 Web Web Web Web Web. Web Abstract Web-page R

Web Basic Web SAS-2 Web SAS-2 i

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

2 : Open Clip Art Library [4] Microsoft Office PowerPoint Web PowerPoint 2 Yahoo! Web [5] SlideShare Yahoo! Web Yahoo! Web

,,,,., C Java,,.,,.,., ,,.,, i

. Yahoo! 1!goo 2 QA..... QA Web Web [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2

Vol. 28 No. 2 Apr Web Twitter/Facebook UI Twitter Web Twitter/Facebook e.g., Web Web UI 1 2 SNS 1, 2 2

Microsoft Word - deim2011_new-ichinose doc

- June 0 0

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

wki_shuronn.pdf

29 jjencode JavaScript

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

main.dvi

Core Ethics Vol. : - : : : -

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

先端社会研究 ★5★号/4.山崎

(a) (b) 1 JavaScript Web Web Web CGI Web Web JavaScript Web mixi facebook SNS Web URL ID Web 1 JavaScript Web 1(a) 1(b) JavaScript & Web Web Web Webji

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

Yamagata Journal of Health Sciences, Vol. 16, 2013 Tamio KEITOKU 1 2 Katsuko TANNO 3 Kiyoko ARIMA 4 Noboru CHIBA 1 Abstract The present study aimed to

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

日本看護管理学会誌15-2

58 10

main.dvi

FA

fiš„v8.dvi

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

IPSJ SIG Technical Report 3,a),b),,c) Web Web Web Patrash Patrash Patrash Design and Implementation of 3D interface for Patrash: Personalized Autonomo

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

1 Fig. 2 2 Fig. 1 Sample of tab UI 1 Fig. 1 that changes by clicking tab 5 2. Web HTML Adobe Flash Web ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) 3 Web 2.1 Web Goo

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

ÿþ

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1 1 tf-idf tf-idf i

WikiWeb Wiki Web Wiki 2. Wiki 1 STAR WARS [3] Wiki Wiki Wiki 2 3 Wiki 5W1H Wiki Web 2.2 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 2.3 Wiki 2015 Informa

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

社会問題の解決に資する

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO

untitled

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

, IT.,.,..,.. i

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Kyushu Communication Studies 第2号

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

untitled

( )

Transcription:

DEIM Forum 2011 F5-4 contexthashtag Twitter 525 8577 1 1 1 525 8577 1 1 1 E-mail: kaieda@coms.ics.ritsumei.ac.jp, huang@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp contexthashtag Twitter Twitter Twitter Hashtag Hashtag Hashtag Hashtag contexthashtag Hashtag contexthashtag contexthashtag Hashtag Hashtag Twitter Hashtag Abstract An Event Recommendation System for Twitter Users Using the contexthashtag Takahiro KAIEDA, Hung-Hsuan HUANG, and Kyoji KAWAGOE Graduate School of Science and Engineering, Ritsumeikan University Nojihigashi 1 1 1, Kusatsu, Shiga, 525 8577 Japan Colledge of Information Science and Engineering, Ritsumeikan University Nojihigashi 1 1 1, Kusatsu, Shiga, 525 8577 Japan E-mail: kaieda@coms.ics.ritsumei.ac.jp, huang@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp In this paper, we propose an event recommendation system for Twitter users using contexthashtag. Twitter users can get rich event information by Hashtags benefitting from the widespread of Twitter. However, event retrieval merely using Hashtags may not meet the user s expectation due to Hashtags property where they can be defined independently by different users and lack coincidence. In order to solve this problem, we propose contexthashtag that forms a structured event-hashtag space where an existing event Hashtag can be located as a region. The system then recommends the user new events based on similarity comparison of contexthashtags between new events and ones of the events which the user ever participated. Key words Twitter Hashtag Text Classification Recommendation System 1. eventpage.jp 1 Twitter 2 [1] [2] [3] [4] 1 http://eventpage.jp/ 2 http://twitter.com/ Web Twitter Hashtag Hashtag Twitter hanabi ) Hashtag Hashtag Hashtag Web hashtagsjp 20000 2010 12 26 Hashtag

Web Hashtag Hashtag Twitter Hashtag Twitter Hashtag Hashtag Hashtag Twitter Hashtag Twitter Hashtag contexthashtag contexthashtag Hashtag contexthashtag Hashtag Hashtag Hashtag Twitter 2. Hashtag contexthashtag 2. 1 Hashtag Twitter Hashtag Hashtag 3 Hashtag Twitter Twitter ricebowl Twitter Hashtag ricebowl Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag 2010 12 31 NHK Hashtag nhk kouhaku61 kouhaku Twitter Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag 歌 手 倉 木 麻 衣 #Mai #Mai&Ayumi 浜 崎 あゆみ #Ayumi 20062007200820092010 開 催 日 時 年 ) 倉 木 麻 衣 #Mai 1 contexthashtag #Mai&Ayumi[2009, 1, 1, ]t 020062007200820092010 開 催 日 時 年 ) 1 浜 崎 あゆみ #Ayumi[2010, 0, 1, ]t 1 [2007, 1, 0, ]t 2 contexthashtag Hashtag Twitter 2. 2 contexthashtag contexthashtag Hashtag Hashtag Hashtag Hashtag contexthashtag Hashtag contexthashtag Wikipedia 4 Hashtag Hashtag Hashtag contexthashtag contexthashtag 1 1 contexthashtag 1 1 contexthashtag Hashtag Ayumi 2010 Mai 2007 Mai&Ayumi 2009 AKB AKB48 2010 3 http://hashtagsjp.appspot.com/ 4 http://ja.wikipedia.org/wiki/

Hashtag 1 contexthashtag ) 1 1 Hashtag Ayumi ) =, 2010) Ayumi Mai& Ayumi Mai 2 contexthashtag Hashtag Hashtag Mai&Ayumi contexthashtag AKB AKB48 Hashtag AKB 2011 Hashtag Mai 2011 Hashtag contexthashtag Hashtag Hashtag contexthashtag Hashtag Hashtag Hashtag 3. contexthashtag Twitter contexthashtag Hashtag Hashtag Hashtag contexthashtag Hashtag 3 1 20 1 URL 3 Hashtag Hashtag 5 hashtagsjp Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag 2 Hashtag contexthashtag Hashtag Hashtag contexthashtag Hashtag 3. 1 Hashtag Hashtag Hashtag contexthashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag 3. 2 contexthashtag contexthashtag [5] contexthashtag Hashtag Hashtag contexthashtag contexthashtag Hashtag Hashtag h i N Hashtag H H = {h 1, h 2,, h N contexthashtag g k M contexthashtag G G = {g 1, g 2,, g M contexthashtag g k n k E k = {E k1,, Eknk E k j Hashtag H contexthashtag H = H 1 H 2 H N g k H k h k j Hk h k j {e = k 1,, ek n k ) e k i Ẽi k Ei ki = 1,, n k) 1) h k j gk 2) h k j contexthashtag gk Hashtag Ẽ k i E k i contexthashtag g k Ig k 5 http://hashtagcloud.net/

Ig k Hashtag h k j ek i contexthashtag g k Ei k 3. 3 Hashtag contexthashtag Hashtag 1) E k 3 contexthashtag contexthashtag g k Hashtag h k j p j e j f j h k j = p t j e j f j t 3) t 3. 3. 1 Geocoding API 6 Geocoding API XML 35.661913 139.700943 contexthashtag g k Hashtag p j p jx, p jy ) p j = p jx, p jy 4) 3. 3. 2 contexthashtag g k Hashtag f j f ji i = 1,..., n k ) f j = f j1,..., f jnk 5) 3. 4 Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag Hashtag contexthashtag Hashtag h i Hashtag w j 2 h i w j S imh i, w j ) 6) 0 < = S imh i, w j ) < = 1 Hashtag h i p i e i f i Hashtag w j p j e j f j S imh i, w j ) = S im p p i, p j ) S im f f i, f j ) S im e e i, e j ) 6) S im p p i, p j ) 7) S im f f i, f j ) 8) S im p p i, p j ) 1 S im f f i, f j ) S im p p i, p j ) = S im f f i, f j ) = 1 1 + dp i, p j ) f i f j f i f j dp i, p j ) 7 100km ) S im e e i, e j ) 9) α F x e i, e j ) x contexthashtag ) e i e j S im e e i, e j ) F x e i, e j ) 1 7) 8) f ji Hashtag i 1 Hashtag i ) f ji = 0 ) contexthashtag $concert Hashtag UH WL $concert f j =, AKB48, UH WL 2010 12 8 Hashtag 35.512228, 139.620165, 2010/12/8, 0, 0, 1 ) 1 1 α S im e e i, e j ) = 9) F x e i, e j ) + 1 α 1 α = 4 4. contexthashtag Twitter 4. 1 6 http://www.geocoding.jp/ 7 http://yamadarake.web.fc2.com/trdi/2009/report000001.html

1. 前 処 未 理 来 イベントHashtagを イベント 推 薦 システム 取 得 Hashtag 検 索 サイト メッセージを 利 STEP1 3.contextHashtag 2. contexthashtagに 基 本 データをもとに 空 分 間 対 類 内 応 に する 位 置 付 け 基 URL 本 イベントHashtag データ,メッセージ ログイン 用 者 の 過 去 取 イベントHashtag 得 付 き contexthashtag DB 利 用 者 Hashtagと 利 STEP2 類 似 用 度 者 を が 使 未 用 来 した イベントHashtag 全 ての 過 去 イベント 間 の ユーザDB イベント とメッセージ 情 報 絞 STEP2で STEP3 り 込 み算 出 した 値 を 閾 値 により Twitter 3 3 Twitter Hashtag Twitter contexthashtag Hashtag contexthashtag contexthashtag Hashtag Twitter Hashtag Hashtag Hashtag URL Hashtag contexthashtag Hashtag contexthashtag STEP1 Hashtag STEP2 STEP1 contexthashtag Hashtag Hashtag STEP3 STEP2 Hashtag 4. 2 contexthashtag 4. 2. 1 3 contexthashtag 4 2 3 Hashtag Hashtag 100 Hashtag 3 Hashtag contexthashtag 9 9 3 1990 2010 緯 度 経 度 A1 B 1 C D E F G H I 開 催 日 2006 1999 2010 時 1 2003 1998 1992 2010 1996 1 1 1998 35.689506 1 1991 139.691701 2000 1 1 1995 2005 35.443708 139.638026 0 0 0 0 0 0 10 10 01 1990 1998 4 ) 4. 2. 2 4 5 6 4 Hashtag 1996MaiAyu Hashtag 3 5 Hashtag 1992S azan Hashtag 3 6 Hashtag 1991S map Hashtag 3 4 5 6 SMAP Hashtag 4 5 6 Hashtag 5 2 Hashtag Hashtag ) 1996MaiAyu 1996 1992S azan 1992 1991S map SMAP 1991 3, 35.689506,139.691701 35.443708,139.638026 35.011636,135.768029 34.693738,135.502165 43.062096,141.354376 38.268215,140.869356 35.181446,136.906398 33.590355,130.401716

4 1 ) EXILE 2000 0.546 2006 0.388 2010 0.359 5 2 ) 1998 0.615 1997 0.468 1993 0.286 6 3 ) SMAP 2001 0.549 SMAP 1993 0.439 SMAP 1999 0.408 4 5 6 contexthashtag 5. 5. 1 contexthashtag Java Twitter API Java Twitter4J contexthashtag Hashtag 2010 5 2010 8 Hashtag Hashtag contexthashtag 680 150 contexthashtag Hashtag 20 2010 8 Hashtag25 Hashtag Hashtag Hashtag 0.05 contexthashtag halcali contexthashtag f j =,, halcali, Per f ume,,, ) halcali HALCARI 2011 2 13 Hashtag 35.655289, 139.704536, 1, 0, 0,, 2011 6 Hashtag Hashtag F contexthashtag Hashtag Hashtag 3 1 ) 4 ) 1 2 3 5. 2 5 7 8 7 F F Hashtag 8 Hashtag 7 0.269 0.247 0.431 0.611 F 0.309 0.351 8 2.67 3.5 2.67 0.47 0.5 0.47

5 1 contexthashtag 2 6. contexthashtag Twitter contexthashtag Hashtag Hashtag Hashtag Twitter contexthashtag Hashtag Twitter hashtagsjp [1] Akshay Java, Xiaodan Song, Tim Finin, Belle Tseng Why we twitter: understanding microblogging usage and communities WebKDD/SNA- KDD 07 Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pp. 56-65, 2007. [2] Owen Phelan, Kevin McCarthy, Barry Smyth Using Twitter to Recommend Real-Time Topical News RecSys 09 Proceedings of the third ACM conference on Recommender systems, pp. 385-388, 2009. [3] Miles Efron Hashtag Retrieval in a Microblogging Environment SIGIR 10 Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 787-788, 2010. [4], Twitter Tweet, Web, 2010, 7, pp. 31-32, 2010. [5], Vol.19, No.3, pp.365 372, 2004.