310 T. SICE Vol.51 No.5 May 2015 Konolige 7) Correlationbased Markov Localization Olson 8) Konolige Dellaert 9) Monte Carlo Localization (MCL) 10) 2 2



Similar documents
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Spin Image [3] 3D Shape Context [4] Spin Image 2 3D Shape Context Shape Index[5] Local Surface Patch[6] DAI [7], [8] [9], [10] Reference Frame SHO[11]

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Sobel Canny i

1234 Vol. 25 No. 8, pp , 2007 CPS SLAM Study on CPS SLAM 3D Laser Measurement System for Large Scale Architectures Ryo Kurazume,Yukihiro Toba

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

Vol.2014-MBL-73 No.26 Vol.2014-ITS-59 No /11/21 情報処理学会研究報告 IPSJ SIG Technical Report NDT-I MCL:輝度付き多次元正規分布地図を用いた 位置推定手法 伊藤誠悟1 鋤柄和俊1 小山渚1 大桑政幸1

光学

) 1 2 2[m] % H W T (x, y) I D(x, y) d d = 1 [T (p, q) I D(x + p, y + q)] HW 2 (1) p q t 3 (X t,y t,z t) x t [ ] T x t

( )

paper.dvi

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

2 ( ) i

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

soturon.dvi

Grund.dvi

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

28 Horizontal angle correction using straight line detection in an equirectangular image

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

GPGPU

3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

3_23.dvi

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

(a) Picking up of six components (b) Picking up of three simultaneously. components simultaneously. Fig. 2 An example of the simultaneous pickup. 6 /

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Fig Measurement data combination. 2 Fig. 2. Ray vector. Fig (12) 1 2 R 1 r t 1 3 p 1,i i 2 3 Fig.2 R 2 t 2 p 2,i [u, v] T (1)(2) r R 1 R 2

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

58 10

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

(MIRU2010) Geometric Context Randomized Trees Geometric Context Rand

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

VRSJ-SIG-MR_okada_79dce8c8.pdf

29 jjencode JavaScript

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

光学

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

75 Author s Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin

4.1 % 7.5 %

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

0801297,繊維学会ファイバ11月号/報文-01-青山

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

SICE東北支部研究集会資料(2012年)

AR. AR AR Lenti- Mark[3] 1 LentiMark AR ARToolKitPlus 1 3 ArraMark ArraMark 5). ID ArraMark 9 1 Lens area Reference points () ArraMark prototpe

14 2 5

DTN DTN DTN DTN i

,,.,.,,.,.,.,.,,.,..,,,, i

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Human-Agent Interaction Simposium A Heterogeneous Robot System U


xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S


206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

johnny-paper2nd.dvi

kut-paper-template.dvi

kiyo5_1-masuzawa.indd

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

untitled

7,, i

9.プレゼン資料(小泉)R1

LAN LAN LAN LAN LAN LAN,, i


.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

IPSJ SIG Technical Report Vol.2012-ICS-167 No /3/ ,,., 3, 3., 3, 3. Automatic 3D Map Generation by Using a Small Unmanned Vehicle

untitled

24 Region-Based Image Retrieval using Fuzzy Clustering

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

untitled

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Transcription:

19 I Vol.51, No.5, 309/318 2015 (CIF) Robust Global Scan Matching Method Using Congruence Transformation Invariant Feature Descriptors and a Geometric Constraint between Keypoints Takayuki Nakamura and Shohei Wakita This paper proposes a new global scan matching algorithm using the CIF descriptors and a geometric constraint between keypoints. The CIF descriptor was proposed in our previous work. It is a feature decriptor that is invariant against a congruence transformation. In our previous work, our method was able to perform robust local scan matching using CIF decriptors, but was apt to fail global scan mathching where a large map is used as the reference scan. In this paper, in order to resolve this problem, we propose to use a geometric constraint between keypoints in addtion to the CIF decriptors for the global scan mathching task. Our method can perform global scan matching in a cluttered environment without using an initial alignment. Through experiment in real environment, we confirm the validity of our method by comparing the performance of our method and that of our previous method. Key Words: CIF descriptor, geometric constraint, global scan matching, map updating, mobile robot 1. 1) 2) 3) 930 Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama Received June 20, 2014 Revised December 26, 2014 CIF (Congruence transformation Invariant Feature) 4), 5) CIF 2 4), 5) CIF 2. 1), 2), 6) 7) 10) TR 0005/15/5105 0309 c 2014 SICE

310 T. SICE Vol.51 No.5 May 2015 Konolige 7) Correlationbased Markov Localization Olson 8) Konolige Dellaert 9) Monte Carlo Localization (MCL) 10) 2 2 2 2 FFT CIF (Congruence transformation Invariant Feature) CIF 3. Fig. 1 t Scan(t) Map ( ) Δ x, Δỹ, Δ θ (1) (3) Map 1 Fig. 1 Overview of our global scanmatching method 3. 1 1 1 2 3 1 CIF 4 (2) CIF

51 5 2015 5 311 2 CIF 11) Fig. 1 (1) 1 δp max 2 δp 3 (Fig. 2 ) 11) ( ) yi+α y i η i =arctan x i+α x i η i ϑ i = η i+1 η i thresh CIF thresh Fig. 3 Definition of a keypoint Fig. 2 Rearranging scan data 3. 2 2 Fig. 1 (2) Fig. 3(a) p i(i =1, 2, N) p i,p i+α η i 4 η i 2 δp max =0.5m 3 δp =0.1m 0.1 0.2m 4 δp =0.1m α =1 3. 3 CIF (Congruence transformation Invariant Feature) CIF 3. 2 p CIF Fig. 1 (3) CIF Fig. 3(b) p Σ p p i 1,p i+1 p 2 2 η p p Σ p p p p Σ p 2 1 SP p p

312 T. SICE Vol.51 No.5 May 2015 h =(H SP [1]...H SP [8]H SD [1]...H SD [8]) Fig. 4 Definition of segment SP and its histogram p M 2M CIF 32 CIF p M CIF h M 2M CIF h 2M h 2M h M 2 h 2M 1/2 h M h 2M 32 CIF h h = (h M[1], )..., h M[16], h2m [1],..., h2m [16] 2 2 Fig. 5 Definition of segment SD and its histogram p Fig. 4(a) SP 1 SD n 1 p Fig. 5(a) SD p d M neighbor() neighbor() index neighbor() SP λ SP i η Σ p θ SP i p θ SP i π π 8 H SP Fig. 4(b) H SP H SP H SP [k], (k =1, 2, 8) neighbor() SD λ SD i η Σ p θ SD i p θ SD i π π 8 H SD Fig. 5(b) H SD H SD H SD [k], (k =1, 2, 8) p H SP H SD 16 16 16 3. 4 CIF p, (i =1 N KC) q j, (j =1 N KR) (Fig. 1 (4) ) 3 3 (p s, p t, p u) CIF 3 r L 3 3 CIF 3 3 d min 3 d max r L d min d max 3 5 5 r L =8.0m,d min =3.0m,d max =10.0m

s, p o) <r L, d(p t, p o) <r L, d(p u, p o) <r L d(p d min <d(p s, p t) <d max d min <d(p t, p u) <d max d min <d(p u, p s) <d max d(p 1, p 2) 2 p 1, p 2 p o 3 p, (i =1 N KC) N α L C L C : { (p s1, p t1, p u1), (p s2, p t2, p u2), (p snα, p tnα, p unα )} q j, (j = 1 N KR) 3 3 (q l, q m, q n) 3 3 3 6 7 d(p s, p t) δd < d(q l, q m) <d(p s, p t)+δd d(p t, p u) δd < d(q m, q n) <d(p t, p u)+δd d(p u, p s) δd < d(q n, q l ) <d(p u, p s)+δd 3 q j, (j =1 N KR) N β L R L R : { (q l1, q m1, q n1), (q l2, q m2, q n2), (q lnβ, q mnβ, q nnβ ) } 3 3 CIF 96 3 3 L C α 3 CIF 3 96 H α L R β 3 CIF 3 96 H β H α = ( h s [1],..., h s [32], h t [1],..., h t [32], h u [1],..., h u [32] ) 6 3 7 δd =0.1m 51 5 2015 5 313 ( ) H β = h l [1],..., h l [32], h m [1],..., h m [32], h n [1],..., h n [32] 2 1 96 0 1 H α H α H α[k] = Hα[k] 96 H α[k] k=1 H α H β 3 (p sα, p tα, p uα) 3 (q lβ, q mβ, q nβ ) S (α, β) S (α, β) = 96 k=1 H α[k] H β [k] 3 (p sα, p tα, p uα) (q lβ, q mβ, q nβ ) α =1 N α,β =1 N β { } (α,β ) = arg max α arg max S(α, β) β (p sα, p tα, p uα ) (q lβ, q mβ, q nβ ) CIF CIF 3. 5 2 1 (Fig. 1 (5) ): 12), 13) 3 12), 13) 2 (Fig. 1 (6) ):

314 T. SICE Vol.51 No.5 May 2015 14), 15) ICP o ICP [i,j (i )] w j (i) O o = w j (i) O Fig. 6 Map of environment I (reference scan) w j (i) w j () =1 / C j (), w j (i) = w j (i) 3 w j (i) j (i)=1 C j C j = 32 k=1 (h k hj k )2 ICP ICP ICP 4. SICK LMS100 270 0.25 Mobilerobots (P3-DX) A 1 5 PC(2.70 GHz Intel Corei7-2620M 8GB of RAM) 55 m 55 m (MRPT) 16) Fig. 6 A 1 ( I) 8 ID 26 8 21 3630 δp =0.1m 4. 1 CIF CIF thresh =40deg M =20 Fig. 7 CIF 9 4 10 CIF 1 CIF Fig. 7 Example result of finding corresponding points based on only CIF descriptors Fig. 8 CIF 11 9 66 ms 10 338 43 555 56 1.39 ms 1.11 ms 11 22651 ms

51 5 2015 5 315 Table 1 Success /failure of finding corresponding points by our method at point [4] in case of changing M and thresh thresh =20 thresh =30 thresh =40 M =20 M =30 M =40 Fig. 8 Example result of finding corresponding points by our method 4 3 3 3 3 26 CIF 26 7 ( 27%) CIF 26 19 ( 73%) CIF CIF thresh M Fig. 8 Fig. 6 4 43 Table 1 thresh M 20 40 ( ) M (CIF ) thresh thresh = 30 deg M =20 Fig. 9 12 Fig. 6 5 307 43 18 Fig. 9 Table 2 Example result of finding corresponding points by our method Success /failure of finding corresponding points by our method at point [5] in case of changing M and thresh thresh =20 thresh =30 thresh =40 M =20 M =30 M =40 Table 2 thresh M 20 40 M thresh thresh =40deg M =20 thresh =40deg 35 12 174643 ms

316 T. SICE Vol.51 No.5 May 2015 thresh, M MCL Fig. 6 26 (MRPT) 16) 5000 26 19 MCL MCL 13 4. 2 ( ) Σ W Δ x, Δỹ, Δ θ (5), (6) Fig. 10 (6) 14 (MRPT) 16) ICP O =50 3 Table 3 Fig. 10 error ( ) Δ x, Δỹ, Δ θ Table 3 Result of global self-localization by our method in Fig. 9 Δx [m] Δy [m] Δθ [deg] ground truth 10.62 2.74 137.5 our method 10.54 2.71 137.4 error 0.08 0.03 0.1 4. 3 Fig. 11 A 5 ( II) 15 Fig. 12 16 Fig. 10 Result of precise matching by our method 13 MCL MCL 14 ( ICP) 21872 ms Fig. 11 Map of environment II (reference scan) 15 33 2395 δp =0.1m 16 1887 ms

51 5 2015 5 317 Fig. 12 Result of finding corresponding points in environment II by our method ( ) 17 Fig. 13 Fig. 12 18 MCL ( ) Fig. 11 MCL MCL ( ) (MRPT) 16) 5000 Fig. 14 MCL 19 MCL Fig. 14 The result of precise alignment of reference and input (dark gray dots) scans using MCL method in the environment II Fig. 13 The result of precise alignment of reference (gray dots) and input (dark gray dots) scans based on pairs of the corresponding points in the environment II Table 4 Results of global self-localization by our method in Fig.12andMCLmethodinFig.13 Δx [m] Δy [m] Δθ [deg] ground truth 0.46 0.64 49.4 our method 0.51 0.73 49.8 error 0.05 0.09 0.4 MCL 18.01 32.11 215.2 error 17.55 31.47 165.8 17 361 261 57 1.09 ms 0.90 ms 18 ( ICP) 1996 ms Table 4 II MCL 19 MCL 384088 ms

318 T. SICE Vol.51 No.5 May 2015 error MCL ( ) ( ) 5. CIF CIF ICP 3 ICP ( (C) No. 26450366) 1 J.S. Gutmann, T. Weigel and B. Nebel: Fast, Accurate, and Robust Self-Localization in Polygonal Environments, Proc. IROS 99, 1412/1419 (1999) 2 P. Jensfelt and S. Kristensen: Active Global Localization for a Mobile Robot Using Multiple Hypothesis Tracking, IEEE Trans. Robotics and Automation, 17-5, 748/760 (2001) 3 25-3, 66/77 (2007) 4 T. Nakamura and Y. Tashita: Congruence Transformation Invariant Feature Descriptor for Robust 2D Scan Matching, Proc. 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), SYS-10 (2013) 5 2D (CIF) 19 6C3, 592/598 (2014) 6 M. Tomono: A scan matching method using Euclidean invariant signature for global localization and map building, Proc. ICRA 04, 866/871 (2004) 7 K. Konolige and K. Chou: Markov Localization Using Correlation, Proc. IJCAI 1999, 1154/1159 (1999) 8 E. Olson: Real-time Correlative Scan Matching, Proc. ICRA 2009, 4387/4393 (2009) 9 F. Dellaert, D. Fox, W. Burgard and S. Thrun: Monte Carlo Localization for Mobile Robots, Proc. ICRA 1999, 1322/1328 (1999) 10 S. Bando, Y. Hara and T. Tsubouchi: Global Localization of a Mobile Robot in Indoor Environment Using Spatial Frequency Analysis of 2D Range Data, Proc. ICMA 2013, 488/493 (2013) 11 G.A. Borges and M.J. Aldon: Line extraction in 2D range images for mobile robotics, Journal of Intelligent and Robotic Systems, 40-3, 267/297 (2004) 12 K. Lingemann, H. Surmann, A. Nuchter and J. Hertzberg: Indoor and outdoor localization for fast mobile robots, Proc. IROS 04, 2185/2190 (2004) 13 2 28-5, 648/657 (2010) 14 P.J. Besl and N.D. McKay: A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Analysis and Machine Intelligence, 14-2, 239/256 (1992) 15 F. Lu and E. Milios: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans, Journal of Intelligent and Robotic Systems, 18-3, 249/275 (1997) 16 The Mobile Robot Programming Toolkit (MRPT): http://www.mrpt.com 1996 97 2002 2013 96 1 2007 1 2013