RS-485/RS-422 Circuit Implementation Guide

Similar documents
LTC2850/LTC2851/LTC V、20Mbps RS485/RS422トランシーバ

TO: Katie Magee

Microsoft Word - TC74HCT245AP_AF_J_P8_060201_.doc

Microsoft Word - TC74HC245_640AP_AF_P8_060201_.doc

TC74HCT245AP/AF

2STB240PP(AM-2S-G-005)_02

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10

TC74HC245,640AP/AF

第 5 章 推奨配線及びレイアウト 内容ページ 1. 応用回路例 プリント基板設計における推奨パターン及び注意点 Fuji Electric Co., Ltd. MT6M12343 Rev.1.0 Dec

スライド 1

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄

降圧コンバータIC のスナバ回路 : パワーマネジメント

p ss_kpic1094j03.indd

RS*232C信号絶縁ユニット

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ

AN-1397: ADM3065E 50 MBPS RS-485 トランシーバを使用した ENDAT モーター・コントロール・エンコーダ・アプリケーション

2STB240AA(AM-2S-H-006)_01

Microsoft Word - TC4538BP_BF_J_2002_040917_.doc

富士通セミコンダクタープレスリリース 2009/05/19

機器仕様構造 : プラグイン構造接続方式 入出力信号 供給電源 :M3.5 ねじ端子接続 ( 締付トルク 0.8N m) NestBus RUN 接点出力 : コネクタ形ユーロ端子台 ( 適用電線サイズ :0.2~2.5mm 2 剥離長 7mm) 端子ねじ材質 : 鉄にクロメート処理ハウジング材質

Microsoft Word - TC4013BP_BF_J_P9_060601_.doc

Microsoft Word - TC4011BP_BF_BFT_J_P8_060601_.doc

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

Microsoft Word - TC74HC107AP_AF_J_P9_060201_.doc

共通部機器仕様構造 : 壁取付シャーシに避雷器 モデム 入出力ユニットをマウント接続方式 回線 :M4 ねじ端子接続 入出力 電源 :M3.5 ねじ端子接続 接地 :M4 ねじ端子接続シャーシ材質 : 鋼板に黒色クロメート処理ハウジング材質 : 難燃性黒色樹脂アイソレーション : 回線 - 入出力

出力電圧ランク 品名 出力電圧 品名 出力電圧 品名 出力電圧 NJU774*F15 1.5V NJU774*F28 2.8V NJU774*F4 4.V NJU774*F18 1.8V NJU774*F29 2.9V NJU774*F45 4.5V NJU774*F19 1.9V NJU774*F

ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E: 3.3 V、±15 kV ESD 保護付き、半/全二重、RS-485 / RS-422 トランシーバ

TC74LCX245F/FT/FK

問題 バイポーラ電源がないと 正と負の電圧や電流を瞬断なくテスト機器に供給することが困難になります 極性反転リレーやスイッチ マトリクスを持つ 1 象限または 2 象限電源では V またはその近傍に不連続が生じ これが問題になる場合があります ソリューション 2 象限電圧のペアを逆直列に接続すれば

スライド 1

Layout 1

NJU72501 チャージポンプ内蔵 圧電用スイッチングドライバ 概要 NJU72501はチャージポンプ回路を内蔵し 最大で3V 入力から 18Vppで圧電サウンダを駆動することができます このチャージポンプ回路には1 倍 2 倍 3 倍昇圧切り替え機能を備えており 圧電サウンダの音量を変更すること

PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Cir

ADG658/ADG659: 3 / 5 / ±5 V、4 / 8 チャンネル CMOS アナログ・マルチプレクサ

BU4S66G2 : アナログスイッチ/ロジックIC

TC74HC00AP/AF

基本的なノイズ発生メカニズムとその対策 電源 GND バウンス CMOS デジタル回路におけるスイッチング動作に伴い 駆動 MOS トランジスタのソース / ドレインに過渡的な充放電電流 及び貫通電流が生じます これが電源 GND に流れ込む際 配線の抵抗成分 及びインダクタンス成分によって電源電圧

ご使用前に必ずお読みください 2 電源 8bit 双方向ロジックレベル変換モジュール MM-TXS01 取扱説明書 この度は2 電源 8bit 双方向ロジックレベル変換モジュール MM-TXS01 をお買い求めいただきまして誠にありがとうございます 本製品は Texas Instruments 社製

形式 :W2VS 絶縁 2 出力小形信号変換器みにまる W2 シリーズ 直流入力変換器 ( アナログ形 ) 主な機能と特長 直流信号を入力とするコンパクト形プラグイン構造の変換器 アナログ回路により直流信号を統一信号に変換 高速応答形を用意 ワールド電源を用意 密着取付可能 アプリケーション例 プロ

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています

形式 :WYPD 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着

Microsoft PowerPoint pptx

スライド 1

形式 :AEDY 直流出力付リミッタラーム AE UNIT シリーズ ディストリビュータリミッタラーム主な機能と特長 直流出力付プラグイン形の上下限警報器 入力短絡保護回路付 サムロータリスイッチ設定方式 ( 最小桁 1%) 警報時のリレー励磁 非励磁が選択可能 出力接点はトランスファ形 (c 接点

NJG1660HA8 SPDT スイッチ GaAs MMIC 概要 NJG1660HA8 は WiMAX やデータ通信カードをはじめとする通信機器の高周波信号切り替え等の用途に最適な大電力 SPDT スイッチです 8GHz までの広周波数帯域をカバーし 高パワーハンドリング 低損失 高アイソレーショ

PLZ-5W_ KPRI21.pdf

CMOS リニアイメージセンサ用駆動回路 C CMOS リニアイメージセンサ S 等用 C は当社製 CMOSリニアイメージセンサ S 等用に開発された駆動回路です USB 2.0インターフェースを用いて C と PCを接続

TC74HC109AP/AF

Microsoft Word - ca33-J.doc

ブロック図 真理値表 STEP CLOCK LATCH ENABLE SERIAL IN OUT 0 OUT5 OUT 7 SERIAL OUT 1 UP H L D n D n D n 5 D n 7 D n 7 2 UP L L D n+1 No change D n 6 3 UP H L D

elm1117hh_jp.indd

TC74HC14AP/AF

Microsoft PowerPoint - ch3

elm73xxxxxxa_jp.indd

CMOS リニアイメージセンサ用駆動回路 C10808 シリーズ 蓄積時間の可変機能付き 高精度駆動回路 C10808 シリーズは 電流出力タイプ CMOS リニアイメージセンサ S10111~S10114 シリーズ S10121~S10124 シリーズ (-01) 用に設計された駆動回路です セン

注意 本製品は FCC Class A 装置です 一般家庭でご使用になると 電波干渉を起こすことがあります その際には ユーザーご自身で適切な処置を行ってください 本製品は FCC( 米国連邦通信委員会 ) 規則の Part15 に準拠したデジタル装置 Class A の制限事項を満たして設計され

Microsoft Word - TC4017BP_BF_J_P10_060601_.doc

形式 :M2XPA3 コンパクト変換器みにまるシリーズ パルスアナログ変換器 (PC スペック形 ) 主な機能と特長 パルス入力信号を統一信号に変換 PC による入出力フルコンフィギュレーション可能 センサ用電源内蔵 RS-422 ドライバによるパルス信号を直入力可能 入力周波数レンジ :0~200

XAPP453 「3.3V 信号を使用した Spartan-3 FPGA のコンフィギュレーション」 v1.0 (02/05)

5 付加コード ( 複数項指定可能 ) 規格適合 ( 下記より必ずご指定下さい ) /N:CE UL 適合なし /CE:CE 適合品 /UL:UL CE 適合品 オプション仕様無記入 : なし /Q: あり ( オプション仕様より別途ご指定下さい ) ( 付加コード ( 規格適合 ) の /UL は

名称 型名 SiC ゲートドライバー SDM1810 仕様書 適用 本仕様書は SiC-MOSFET 一体取付形 2 回路ゲートドライバー SDM1810 について適用いたします 2. 概要本ドライバーは ROHM 社製 2ch 入り 180A/1200V クラス SiC-MOSFET

TC74HC112AP/AF

Microsoft PowerPoint - 5章(和訳ver)_15A版_rev.1.1.ppt

TC7WT126FU

形式 :KAPU プラグイン形 FA 用変換器 K UNIT シリーズ アナログパルス変換器 ( レンジ可変形 ) 主な機能と特長 直流入力信号を単位パルス信号に変換 オープンコレクタ 5V 電圧パルス リレー接点出力を用意 出力周波数レンジは前面から可変 ドロップアウトは前面から可変 耐電圧 20

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の

AS5643_Tutorial

Microsoft PowerPoint - 4.CMOSLogic.ppt

B3.並列運転と冗長運転(PBAシリーズ)

スライド 1

Cisco 1900 シリーズ ルータのケーブル情報 と仕様

形式 :R3-NC1 リモート I/O 変換器 R3 シリーズ 通信カード (CC-Link 用 Ver.1.10 アナログ 16 点対応 ) /CE:CE 適合品 三菱製 PLC の 2 重化システム無記入 : 非対応品 /W: 対応品 オプション仕様無記入 : なし /Q: あり ( オプション

Nios II - PIO を使用した I2C-Bus (2ワイヤ)マスタの実装

FSC FSC-110 通信仕様書 (CC-Link 通信プロトコル )

ADM2582E/ADM2587E (Rev. B)

TC74HC4017AP/AF

TC74HCT245AP/AF

ブロック図 真理値表 入力出力 OUTn (t = n) CLOCK LATCH ENABLE SERIAL-IN OUT 0 OUT 7 OUT 15 SERIAL OUT H L D n D n D n 7 D n 15 D n 15 L L D n No Change D n 15 ( 注 )

S1F77330 シリーズ USB 用バススイッチ IC 2 to 1 Bus Switch 概要 S1F77330 シリーズは USB アプリケーションに適したバススイッチ IC です CMOS プロセスを採用しているため 低消費電力を特徴としています パッケージは小型の WCSP を採用している

Microsoft Word - FCTT_CS_Mod( )Jver1.doc

Microsoft PowerPoint - 車載EMC規格概略2014.pptx

NJM2591 音声通信用ミキサ付き 100MHz 入力 450kHzFM IF 検波 IC 概要 外形 NJM259 1は 1.8 V~9.0 Vで動作する低消費電流タイプの音声通信機器用 FM IF 検波 IC で IF 周波数を 450kHz ( 標準 ) としています 発振器 ミキサ IF

光変調型フォト IC S , S6809, S6846, S6986, S7136/-10, S10053 外乱光下でも誤動作の少ない検出が可能なフォト IC 外乱光下の光同期検出用に開発されたフォトICです フォトICチップ内にフォトダイオード プリアンプ コンパレータ 発振回路 LE

LOS Detection Comparison in Optical Receiver

RA-485実習キット

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力

Jan/25/2019 errata_c17m11_10 S1C17 マニュアル正誤表 項目 リセット保持時間 対象マニュアル発行 No. 項目ページ S1C17M10 テクニカルマニュアル システムリセットコントローラ (SRC) 特性 19-3 S1C17M20/M

Cisco 1805 DOCSIS ケーブル ルータ の ケーブル接続手順

形式 :R7K4DML リモート I/O R7K4D シリーズ 少点数入出力ユニット (MECHATROLINK-Ⅰ/-Ⅱ 用 ) 供給電源 直流電源 R:24V DC( 許容範囲 ±10% リップル含有率 10%p-p 以下 ) 2 付加コード オプション仕様無記入 : なし /Q: あり ( オ

はじめに 本資料は NTTグループで使用する高電圧直流で動作するICT 装置等に関わる給電インタフェースや機能について 必要な要求条件を述べたものです 本文中に記載する条件等は 情報通信システムに対する給電システム全体の信頼性 安全性を確保する上で必要とされるものです なお 本資料に記載する内容は

Microsoft PowerPoint - 9.Analog.ppt

TC74HC4051,4052,4053AP/AF/AFT

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部

Microsoft PowerPoint - m54583fp_j.ppt

HD74LS74A データシート

The DatasheetArchive - Datasheet Search Engine

目次 1 I2Cとは 13 結線写真 2 センサの多くがI2Cに対応 14 WHO_AM_I 3 マイコンでのI2C通信例 15 I2C読込みプログラム 4 とは 16 I2C読込みスクリプト概要① 5 タイミングパラメータ 17 I2C読込みスクリプト概要② 6 書込み 18 センサ読込みプログラ

Transcription:

07395-001 N-960 アプリケーション ノート S-485/S-422 回路の実装ガイド 著者 : Hein Marais はじめに 工業用アプリケーションと計装アプリケーション (I&I) では しばしば複数のシステム間で非常に長い距離のデータ伝送が必要になります S-485 バス規格は I&I アプリケーションで最も広範囲に採用されている物理層バス デザインの 1 つです S- 485 の I&I 通信アプリケーションでの使用を最適にしている主要な機能を次に示します 長距離回線 最大 4000 フイート 1 対のツイスト ケーブルで双方向通信が可能 差動伝送によるノイズ耐性の強化とノイズ放出の削減 複数のドライバとレシーバを同じバスに接続可能 広い同相モード レンジにより ドライバとレシーバ間のグラウンド電位差を許容 TI/EI-485- により 最大 10 Mbps のデータ レートが可能 TI/EI-485- 仕様を満たすデバイスは レンジ全体で動作する必要がなく 10 Mbps に制限されない このアプリケーション ノートでは 工業用環境での S- 485/S-422 の実装について説明します S-485/S-422 のアプリケーションとしては プロセス制御回路 産業オートメーション リモート端末 ビル オートメーション ( 暖房 換気 空調 (HVC) など ) セキュリティ システム モーター コントロール モーション コントロールなどがあります 通信業界で最も広範囲に採用されている伝送線規格である TI/EI-485- は S-485 インターフェースの物理層を規定し 通常 Profibus Interbus Modbus Cnet のような高レベルのプロトコルと組み合わせて使用されています このため 比較的長い距離での強固なデータ送信が可能です S-422 物理層は TI/EI-422- で規定されています TI/EI-485- 規格は TI/EI-422- の規定内容と同じであるため TI/EI-485- 規格でドライバとレシーバの規定に使用されている値は 両規格を満たすように定めてあります 差動データ伝送を使用する理由 S-485 が長い距離で通信できる主な理由は 差動すなわち平衡回線を使用していることです 通信チャンネルは 情報を交換するために専用の 1 対の信号ラインを必要とします 一方のライン上の電圧は 他方のライン上の電圧と等しく 電圧は逆極性です TI/EI-485- では この差動対としてライン とライン の 2 本を規定しています ロジック ハイがトランスミッタ入力で受信された場合 (I = 1) ドライバ出力でライン はライン より正側になります (V O > V O ) ロジック ローがトランスミッタ入力で受信された場合は (I = 0) トランスミッタはライン をライン より正側にします (V O > V O ) 図 1 を参照してください I E V O V O V I V O V I 図 1. 差動トランスミッタとレシーバ レシーバ入力でライン がライン より正側である場合 (V I V I > 200 mv) レシーバ出力はロジック ハイになります ( = 1) レシーバ入力でライン がライン より正側にある場合 (V I V I > 200 mv) レシーバ出力はロジック ローになります ( = 0) 図 1 に 差動出力のドライバと差動入力のレシーバから構成される差動シグナリング インターフェース回路を示します システムに混入するノイズは両信号とも等しいため この回路のノイズ性能は向上します 一方の信号は他方と反対極性の信号を出力するため 電磁界が互いに相殺されます このために システムの電磁干渉 (EMI) が小さくなります E ev. 0 本社 / 105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル電話 03(5402)8200 大阪営業所 / 532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪 MT ビル 2 号電話 06(6350)6868

N-960 目次 はじめに... 1 差動データ伝送を使用する理由... 1 S-485 または S-422 の選択... 3 S-422... 3 S-485 とユニット ロードの概念... 3 半二重 S-485... 4 全二重 S-485... 4 終端... 5 無終端... 5 並列終端... 5 C 終端... 5 スタブ長... 5 データレートとケーブル長... 5 フェイルセーフ バイアス機能... 6 レシーバの差動入力スレッショールド電圧... 6 オープン時のフェイルセーフ... 6 真のフェイルセーフ レシーバ... 7 アイソレーション... 8 過渡過電圧ストレスの保護... 9 参考文献... 9 ev. 0-2/9 -

07395-002 N-960 S-485 または S-422 の選択 S-422 は片方向通信のマルチドロップ規格として規定されており これは 1 個のドライバと最大 10 個のレシーバを同じバスに接続できることを意味しています 複数のドライバを同じバスに接続する必要がある場合には S-485 の使用が推奨されます S-485 はマルチポイント規格として規定されており これは 最大 32 個のトランシーバを同じバスに接続できることを意味しています 図 2 に 代表的な S-422 インターフェース回路を示します S-485 回路は同じように見えますが 主な違いはバス アーキテクチャにあります 図 3 に 代表的な S-485 アプリケーション回路を示します S-422 S-422 規格では 最大 10 Mbps のデータ レートと最大 4000 フイートのライン長を規定しています 1 個のドライバが 最大 10 個のレシーバを接続した伝送線を駆動することができます 同相モード電圧 (V CM ) は 信号グラウンドを基準とした ピンと ピンの平均電圧として定義されます (V CM = (V I + V I )/2) S- 422 レシーバは ±7 V の同相モード電圧 (V CM ) を許容します 10 個のすべてのレシーバがバスに接続された場合 最大負荷状態になります S-422 レシーバの入力インピーダンスは 4 kω 以上である必要があります S-485 とユニット ロードの概念 S-485 レシーバの入力インピーダンスは 12 kω 以上と規定されています このインピーダンスは 1 ユニット ロード (UL) を持つものとして定義されています S-485 仕様では 最大 32 UL に耐える能力を規定しています 同様に ⅛UL を持つように規定されたレシーバは レシーバに対するバスの負荷は標準 UL の ⅛ であることを意味します したがって これらのレシーバを 8 倍も多くバスに接続できることになります (8 32 = 256 ノード ) UL とレシーバの入力インピーダンスの詳細については 表 1 を参照してください 多くの S-485 トランシーバの特性は S-422 と同じです S- 485 の同相モード電圧範囲は 7 V~+12 V に拡張されています S-485 トランシーバは スリーステート状態 ( バスから切り離し ) でこの同相モード電圧範囲を許容する必要があります S-485 システムは 特定のノードが送信していないとき 伝送線から切り離すことができるドライバを持つ必要があります S-485 トランシーバの E (TS) ピンは E (E = 1) にロジック ハイが入力されたとき ドライバをイネーブルします E ピンをロー レベル (E = 0) にすると ドライバはスリーステート状態になります これにより 実質的にドライバはバスから切り離されるので 他のノードが同じツイストペア ケーブルを使って送信できるようになります また S-485 トランシーバは レシーバをイネーブル / ディスエーブルする E ピンも持っています E ピンと E ピンを組み合わせて使うと S-485 トランシーバによっては低消費電力のシャットダウン モードにすることができるものもあります この機能は バッテリ駆動のアプリケーションで重要です 表 1.UL レシーバの入力インピーダンス Unit Load No. of Nodes Min. eceiver Input Impedance 1 32 12 kω ½ 64 24 kω ¼ 128 48 kω ⅛ 256 96 kω S-485 レシーバによっては ¼ UL または ⅛ UL を持つように規定されたものもあります ¼ UL を持つように規定されたレシーバは レシーバに対するバスの負荷は標準 UL の ¼ であることを意味します したがって これらのレシーバを 4 倍も多くバスに接続できることになります (4 32 = 128 ノード ) 1 2 3 4 5 I T 10 6 7 8 9 図 2. 代表的な S-422 インターフェース回路 ev. 0-3/9 -

07395-004 07395-003 N-960 半二重 S-485 半二重 S-485 回線は 同じ信号パス上に複数のドライバとレシーバを持ちます これが 同時に 1 個だけのドライバがデータを送信できるようにするドライバ / レシーバ イネーブル ピンを S-485 トランシーバが持たなければならない理由です 半二重バス構成については 図 3 を参照してください この構成は マルチポイント構成で接続された 2 線式 S-485 回路とも呼ばれ 双方向でのデータ伝送が可能ですが 同時には一方向だけです 全二重 S-485 図 4 に 全二重バス構成で接続された S-485 バスの例を示します この構成は マルチポイント マスター / スレーブ構成で接続された 4 線式 S-485 回路とも呼ばれます 全二重 S-485 では マスター ノードとスレーブ ノードとの間で双方向の同時通信が可能です E E E I T T E I GN GN.... GN GN E E I E E I 図 3. 半二重 S-485 バス構成 MSTE SLVE Y E T I E Z E Z I T Y E GN GN Z Y Z Y GN SLVE....... GN SLVE E E I E E I 図 4. 全二重 S-485 バス構成 ev. 0-4/9 -

07395-005 07395-016 CLE LENGTH (Feet) 07395-006 N-960 終端 伝送線には 2 本の線があり その内 1 本はドライバからレシーバへ電流を流し もう 1 本はドライバへ戻るリターン パスを提供します S-485 回線は 終端とグラウンド リターン パスを共用する 2 本の信号線を持つという点でやや複雑ですが 伝送線の基本原理は同じです 信頼度の高い S-485 通信と S-422 通信を実現するためには 伝送線内での反射をできるだけ小さくすることが重要です これは 正しいケーブル終端を行った場合にのみ可能です 反射は 信号の変化時と直後に発生します 長いラインでは 反射はレシーバがロジック レベルの判定を誤るほど長く続くことがあります 短いラインでは 反射はすぐ発生するので 受信ロジック レベルに影響を与えません S-422 アプリケーションでは バス上にドライバが 1 個しか存在しないため 終端を行う場合には 最後のレシーバの近くのケーブル端に接続する必要があります S-485 アプリケーションでは マスター ノードとマスターから最も遠いスレーブ ノードに終端が必要です 表 2 に 各終端技術の比較を示します 無終端 信号がライン上をレシーバまで伝搬するために要する時間により そのラインを伝送線と見なすか否かが決定されます 長い線の伝搬時間は大きくなり 短い線の伝搬時間は小さくなります 伝搬時間がデータ ビットの継続時間より小さい場合 信号品質への影響は小さくなります 信号の立ち上がり時間がケーブルの伝搬遅延の 4 倍を超える場合 ケーブルは伝送線と見なされません 並列終端 2 個以上のドライバが 1 対の線を共用する場合 回線の各端子にケーブルの特性インピーダンスと等しい終端抵抗を接続します 接続されているノード数に関係なく 回路内に 2 個を超える終端抵抗を接続しないようにする必要があります 半二重構成では ケーブルの両端を終端する必要があります ( 図 3 参照 ) 全二重構成では マスター レシーバと最も遠端にあるスレーブ レシーバを終端する必要があります I IFFEENTIL IVE 表 2. 終端の長所と短所 C T 図 6.C 終端 IFFEENTIL ECEIVE Termination dvantages isadvantages None Simple, low power Suitable only for short links with slow drivers Parallel Simple High power C Low power Suitable only for low bit rates and short links スタブ長 スタブ長は ビット周期の逆数に等しい周波数の波長の ¼ より大幅に短い必要があります データレートとケーブル長 高いデータ レートを使用する場合 アプリケーションは短いケーブルに限定されます データ レートが低い場合には 長いケーブルを使うことができます ケーブルの C 抵抗により データ レートが低いアプリケーションのケーブル長が制限されます これは ケーブルの電圧降下が大きくなったとき ノイズ マージンを大きくする必要があるためです ケーブルの C 効果により信号品質が制限され 高いデータ レートを使用する場合ケーブル長が短く制限されます データ レートとケーブル長の組み合わせ例では S-422 に対して 4000 フイートでの 90 kbps から 15 フイートでの 10 Mbps まで変化します 図 7 は ケーブル長対データレートの控え目なガイドとして使うことができます 10000 T E C 終端 C 終端は アイドル回線の消費電力とリンギング電圧を抑えるときに使われます ただし ケーブル長とビット レートが小さくなる悪影響があります 抵抗とコンデンサをバスに直列に ( と の間 ) 接続することができます ( 図 5 参照 ) コンデンサ C T は次式を使って選択します (pf) C T I 2( One-Way Ca ble elay(ps)) Characteristic Impedance Ω IFFEENTIL IVE IFFEENTIL ECEIVE T 1000 100 10 10k 100k 1M 10M T TE (bps) 図 7. ケーブル長対データレート E 図 5. 並列終端 ev. 0-5/9 -

07395-007 CCELETION N-960 MSTE SLVE MIC- PCESSO N UT E E I T T E E I MIC- PCESSO N UT SLVE E E I E E I SLVE MICPCESSO N UT MICPCESSO N UT PESSUE TEMPETUE 図 8. 回路のフェイルセーフ バイアス機能がないマスタ / スレーブ S-485 回路 フェイルセーフ バイアス機能 図 8 に フェイルセーフ バイアス機能がないマスター / スレーブ S-485 回路の構成を示します 非同期データ伝送は一般にこれらのアプリケーションで採用されます スタート ビットは ビット シーケンスの開始を表示し ハイからローへ変化したときに検出されます 8 ビットのデータとパリティ ビットがスタート ビットの後ろに続きます 1 または 2 ビット長のストップ ビットがこのビット シーケンスの後ろに続きます 次のスタート ビットにより 次のビット シーケンスが開始されます 最後の文字が送信されたとき ラインは次のスタート ビットまでハイ レベルを維持する必要があります マルチポイント アプリケーションで バスに接続された複数のトランシーバが同時に受信モードにある場合 これにより問題が生じます これはバス アイドル状態と呼ばれ この場合バスの差動電圧 (V O V O ) は 0 V になります この状態では レシーバ出力 () は S-485 規格での不定になるため レシーバ出力はランダム データになってしまいます このデータが UT に接続されるため システムの誤動作が発生してしまいます レシーバの差動入力スレッショールド電圧 レシーバの差動入力スレッショールド電圧 (V TH ) とは レシーバ入力電圧がこの電圧になったときレシーバ出力の変化 ( ローからハイまたはハイからロー ) が保証される電圧と定義されます 一般的な S-485 トランシーバの差動入力スレッショールド電圧は ±200 mv です これの意味するところは 差動入力が 200 mv (V I V I 200 mv) 以上のとき レシーバ出力はハイ レベル ( = 1) になることが保証され さらに 差動入力が 200 mv (V I V I < 200 mv) 以下のとき レシーバ出力がロー レベル ( = 0) になることが保証されることです レシーバの真理値表については 表 3 を参照してください 表 3. 差動レシーバの真理値表 E (Inputs) 0 +200 mv 1 0 200 mv 0 0 200 mv ( ) +200 mv X 1 X High-Z オープン時のフェイルセーフ バス アイドル状態では バスを駆動するデバイスは存在しません レシーバ出力は不定です このために UT でランダム データが受信されて 疑似スタート ビット 疑似割込み フレーム エラーが発生してしまうことがあります この問題は バスの 1 箇所にプルアップ抵抗とプルダウン抵抗の組み合わせを接続することにより解決することができます 図 9 に バイアス抵抗回路を示します 1 と 2 の計算例を次に示します ( T = 120 Ω の場合 ): VCC 1 = 2 = V I V I 200 mvv I V I = T 2 mv V CC = 5 V の場合は = 1440 Ω V CC = 3 V の場合は = 960 Ω T = 200 の小さい方の値を使用すると (V I V I > 200 mv) システム内のノイズ マージンが大きくなります バス状態と差動入力電圧のグラフについては 図 10 を参照してください 図 9. フェイルセーフ バイアス回路 ev. 0-6/9 -

N-960 バス アイドル状態では V I V I = 0 であるため 30 mv より大きくなり レシーバ出力がハイ レベル ( = 1) になります これは バスに接続されたすべてのトランシーバが真のフェイルセーフ機能を持つ場合 レシーバ出力の値は常に定まることを意味しています バス状態と差動入力電圧のグラフについては 図 12 を参照してください 図 10. 差動入力電圧とレシーバ出力状態 真のフェイルセーフ レシーバ 新世代の S-485 トランシーバでは 真のフェイルセーフ レシーバ入力を内蔵する機能強化が行われています これにより 前の例で示したプルアップ / プルダウン抵抗が不要になります トランシーバが真のフェイルセーフ機能を持つと規定することは 差動入力スレッショールド電圧 (V TH ) が ±200 mv から 200 mv~ 30 mv へ調整されていることを意味します ( 図 11 参照 ) 図 11. 入力スレッショールド電圧 図 12. 差動入力電圧とレシーバ出力状態 ev. 0-7/9 -

N-960 アイソレーション S-485 アプリケーションでは長い回線が存在することがあり このためにバス上の異なるノードのグラウンド電位間に小さい差が発生することがあります このために 共通接地またはグラウンド線への最小抵抗パスを通ってグラウンド電流が流れます 同じ電気システムを使用してすべてのノードの電源を同じ接地へ接続すると グラウンド接続のノイズは小さくなります ただし モーター スイッチ その他の電気ノイズの多い装置により 依然グラウンド ノイズがシステムへ混入されることに注意する必要があります 異なる建物内に複数のノードが存在する場合 異なる電源システムが必要になります このために接地インピーダンスが大きくなり 他のソースからのグラウンド電流が回線のグラウンド線へ流入することが発生しそうです 回線をアイソレーションすると これらの問題を軽減または解消することができます システム内の異なるノードでの接地点の電位がトランシーバの同相モード レンジ内にあることが保証できない場合には 電流アイソレーションが完全なソリューションになります 電流アイソレーションでは情報の流れが許されますが 電流は阻止されます ( 図 13 参照 ) 図 13. 情報の流れを許容しグラウンド電流を阻止する電流アイソレーション 信号ラインや電源はアイソレーションする必要があります 電源のアイソレーションは アナログ デバイセズの isopower のようなアイソレーション型 C-C 電源を使って 信号のアイソレーションはアナログ デバイセズの icoupler 技術を使って それぞれ実現されます M2485 を使った信号のアイソレーション方法と電源のアイソレーション方法の例を図 14 に示します 図 14.M2485 を使った信号と電源のアイソレーション ev. 0-8/9 -

07395-014 N07395-0-4/08(0)-J N-960 過渡過電圧ストレスの保護 I&I アプリケーションでは 雷 電源変動 誘導性スイッチング 静電放電から大きな過渡電圧が発生することにより S-485 トランシーバが損傷を受けることがあります S-485 アプリケーションには 次の ES 保護 EFT 保護 サージ保護の仕様が関係します IEC 61000-4-2 ES 保護 IEC 61000-4-4 EFT 保護 IEC 61000-4-5 サージ保護 アナログ デバイセズは ES 保護を強化した広範囲な S-485 デバイスを提供しています M3072E のように部品番号の後ろに文字 E が付いているのは ES 保護が強化されていることを表しています アナログ デバイセズの全 S-485 のポートフォリオについては http://www.analog.com/s485 をご覧ください 保護のレベルは TVS ダイオードのような外付けクランプ デバイスを使うと さらに強化することができます TVS ダイオードは 通常 S-485 トランシーバのようなシリコン デバイスを過渡電圧から保護するときに使います 保護機能は PN 接合アバランシェ ブレークダウンの低インピーダンスにより 電圧スパイクをある制限値にクランプすることにより実現されます TVS ダイオードは理想的な切断デバイスです TVS ダイオードは ブレークダウン電圧より低い電圧で動作している場合 大きな抵抗と容量の並列接続でモデル化することができます 過渡電圧が発生して サージ電圧が TVS のブレークダウン電圧より大きくなると TVS の抵抗が小さくなってクランプ電圧を一定に維持します TVS は 保護対象のデバイスに損傷を与えないレベルにパルスをクランプします 過渡電圧は 瞬時 (< 1 ns) にクランプされるため 保護対象のデバイスへ損傷電流が流れるのを防止します ( 図 15 参照 ) S-485 アプリケーションでの TVS の機能は バス上の電圧を S-485 トランシーバの同相モード電圧範囲 ( 7 V~+12 V) にクランプすることです TVS デバイスによっては S-485 アプリケーション向けに特別にデザインされたものもあります 大きな電力の過渡電圧に対しては 抵抗 S (10 Ω~20 Ω) を保護対象デバイスと入力ピンとの間に接続することにより保護機能を強化することができます ( 図 15 と図 16 参照 ) 参考文献 TNSIENT CUENT 10Ω TO 20Ω TVS PTECTE EVICE 図 15. 過渡電圧サプレッサ 図 16.TVS のアプリケーション回路 NSI/TI/EI-485--1998: Electrical Characteristics of Generators and eceivers for use in alanced igital Multipoint Systems. NSI/TI/EI-422--1994: Electrical Characteristics of alanced Voltage igital Interface Circuits. xelson, Jay.1998. Serial Port Complete : Programming and Circuits for S-232 and S-485 Links and Networks, Lakeview esearch. Clark, Sean.2004. N-727, icoupler Isolation in S-485 pplications pplication Note.nalog evices, Inc. (June). 2008 nalog evices, Inc. ll rights reserved. 商標および登録商標は各社の所有に属します ev. 0-9/9 -